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Figure 1: A holistic view of medical events with information scents (green) in different time windows

ABSTRACT

It is challenging to visualize temporal patterns in electronic health
records (EHRs) due to the high volume and high dimensionality of
EHRs. In this paper, we conduct a formative study with three clinical
researchers to understand their needs of exploring temporal patterns
in EHRs. Based on those insights, we develop a new visualization
interface that renders medical event trajectories in a holistic timeline
view and guides users towards interesting patterns using an informa-
tion scent based method. We demonstrate how a clinical researcher
can use our tool to discover interesting sub-cohorts with unique
disease progression and treatment trajectories in a case study.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques; Human-centered computing— Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

The availability of electronic health records (EHRs) enables clinical
researchers to discover data-driven insights about diseases and treat-
ments. However, EHRs often include data spanning several years
from hundreds of thousands of patients (i.e., large volume), which
are encoded using hundreds of thousands of unique medical event
types (i.e., high dimensionality). As a result, clinical researchers can-
not easily gain insights from EHRs with bare eyes or primitive data
analysis tools [10]. For example, it is hard to answer questions like
“What are the patients with similar disease progression patterns?”,
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“What are the commonality among them and how are they different
from other patients?”, “What comorbidities have they developed?”,
“Does the ordering of drugs tried matter?”, etc.

Over the years, the information visualization community has
made great efforts to visualize EHRs. Of particular interest to us are
the visualization techniques that identify and render temporal pat-
terns in EHRs [4,6,7,9,13,14,17, 18,20,25,29-32]. To understand
how clinical researchers use such visualization tools in exploratory
cohort analysis, we conducted a formative study with three clinical
researchers at Massachusetts General Hospital and asked them to try
out a state-of-the-art visualization tool called Cadence [13]. Partic-
ipants gave three major pieces of feedback. First, they wished the
visualization could make interesting patterns more recognizable or
at least provide some hints about which medical events to consider
investigating first, instead of users composing their own hypotheses
or queries with little assistance or information scent from the system.
Second, instead of only showing relative temporal ordering, they
suggested time be better represented in the visualization, as an event
occurring a week vs. a month after another event has significantly
different clinical implications. Third, they found it difficult to trans-
late their clinical questions into queries supported by Cadence. For
example, they found it hard to define a meta-event like “seizure”
using several diagnosis codes, and they were also not able to define
a query to answer an exploratory question such as “What symptoms
did patients develop while taking a drug over a time period?”

Based on the formative study, we designed an interactive visual-
ization interface for exploring temporal patterns in electronic health
records. Figure 1 shows an overview of our tool. Our tool provides
a holistic view of disease and treatment trajectories in a timeline
view, where users are given the flexibility to bin medical events into
different time windows. Frequent medical events are rendered in
each time window. The flow between two events in adjacent time
windows indicates the conditional probability of having one event
given another event, which is computed based on the frequency of
each event in the cohort. We also developed a novel algorithm to



identify medical events that may lead to a sub-cohort with unique
temporal patterns. These medical events are highlighted to guide
the data exploration process, inspired by the idea of information
scents in the information foraging theory [8]. Furthermore, our tool
supports a rich set of user interactions to allow clinical researchers
to create a query that answers their clinical questions. For example,
users can group multiple events to form a meta-event. Users can
also define the inclusion or exclusion of an event to filter the cohort
of patients. Clinical researchers can further run statistical tests to
assess the correlation between two medical events.

This paper is organized as follows. Section 2 discusses related
work and elaborates on how our tool is different from existing visual-
ization, clustering, and data mining techniques for EHRs. Section 3
describes the formative study and our findings. Section 4 describes
the tool design. Section 5 demonstrates how a clinical researcher
can use our tool to arrive at a sub-cohort of patients with interesting
and unique temporal patterns. Section 6 concludes this work and
discusses future work.

2 RELATED WORK
2.1 Visualization for temporal patterns in EHRs

Many visualization techniques have been proposed to discover tem-
poral patterns in EHRs [1,4,6,7,9, 13,17, 18, 20, 25,29-32]. To
reduce the volume and dimensionality of medical records, many of
these techniques require a priori event selection, e.g., only including
a small set of events for analysis and ignoring the rest. While several
tools such as EventFlow [20] provide a faithful overview of event
sequences in medical records, the resulting sequence view can be
quite complex and cluttered given the high dimensional structure of
medical events and the rich variations in individual patients’ medical
histories. Therefore, users have to manually filter and aggregate
medical events before they can arrive at a simple and clean sequence
view with recognizable patterns. This manual process is tedious
and time-consuming. OutFlow [30] and Cadence [13] use auto-
mated hierarchical event aggregation algorithms to simplify event
sequences, where users can control the aggregation level through a
slider. However, clinical researchers in our formative study found
such automated aggregation obscure. They wished to have more
transparency and control over the automated aggregation process.

Query-based visualization tools [11,13,16,17,21] allow users to
define a query to filter a dataset and then visualize the query result
for further investigation. However, our formative study shows that,
for exploratory analysis, clinical researchers found it difficult to
decide where to start and which event to further investigate on. They
wished the tool could provide some hints to guide them towards
interesting patterns, rather than coming up with their own hypothesis
or queries. To support this need, we propose a novel algorithm to
compute the information scent of a medical event based on how
likely patients having this event have unique patterns compared with
patients without this event. By following the information scent of
medical events, users can interactively filter the dataset and identify
a sub-cohort of patients with unique temporal patterns.

2.2 Clustering and sequence mining approaches

Clustering-based approaches have been proposed to identify pa-
tients that follow the same or similar patterns [2,3,5,12,14,19,22].
These approaches rely on feature selection and predefined metrics to
measure the similarity between patients. This may hinder opportuni-
ties of identifying latent patterns that are not captured by selected
features or similarity metrics. Furthermore, it may not be readily
determinable by the user why some patients are grouped together
while others are not. As a result, clinical researchers still need to dig
into each cluster of patients’ records to make sense of these clusters.
In fact, given the complexity and temporal nature of medical records,
they are often distributed in a high-dimensional space without clear
boundaries as the basis for clustering.

Frequent sequence mining techniques have also been applied to
identify temporal patterns from EHRs [15,23-26]. However, these
techniques often require careful data preprocessing, aggregation,
or filtering to simplify the raw EHRs, e.g., removing disease and
procedure events that are not related to a specific disease under inves-
tigation. Otherwise, these mining techniques often identify too many
patterns. For example, we identified over 321K sequence patterns
supported by at least 100 patients by running a frequent sequence
mining algorithm [28] on a fully dimensional, non-filtered EHR
dataset of 7K patients. A key challenge is to distill useful insights
from the over-abundance of patterns. Instead of directly visualiz-
ing the large number of sequence patterns identified from an EHR
dataset, we choose to use these patterns to compute the information
scents of medical events and guide users to interactively narrow
down to a sub-cohort of patients with unique sequence patterns.

3 FORMATIVE STUDY

To understand how well existing visualization techniques support
temporal pattern discovery in exploratory cohort analysis, we con-
ducted a formative study with three psychiatrists at Massachusetts
General Hospital. During the study, participants did an exploratory
analysis of a large EHR dataset that they were familiar with, using
a state-of-the-art visualization tool called Cadence [13]. The EHR
dataset contains medical records of 7393 patients diagnosed with
major depressive disorders. In this dataset, diagnosis events are en-
coded with ICD-9 codes, procedures are encoded with CPT-4 codes,
and drug prescriptions are encoded with RxNorm codes.

While the participants felt excited about the visualization support
provided by Cadence, they gave three major pieces of feedback
based on their experience of using Cadence.

The tool should provide more hints to guide users towards inter-
esting patterns. Given a temporal query, Cadence visualizes the
trajectories of events specified in the query. Users can interactively
add more events to the timeline view and refine the query by explor-
ing co-occurring events in a list view or a scatter plot. Due to the
high dimensionality of EHRs, there are often many events in the list
view and the scatter plot. As a result, participants found it difficult
to navigate through these many events and figure out which event
to investigate for the next step. Even though the list view shows the
frequency of co-occurring events and the scatter plot also renders
the statistical signifance value of correlated events, such information
scents are not sufficient for users to decide whether further investi-
gation on an event would lead them to a sub-cohort of patients with
interesting patterns. P1 said, “The distribution bars of co-occurring
events do not really tell me how many patients get it one time, two
times, or many times. We really care about the time density of these
events, not just their frequency.”

Time should be better represented. Though the visualization in
Cadence shows the relative ordering between different events, it is
hard to tell how long an event occurred before another. In clinical
settings, an event occurring one week before another is quite differ-
ent from the event occurring one year before another. In addition,
the timeline view in Cadence does not show co-occurring events
other than those specified in the query. When investigating what
happened to patients who got seizure after taking bupropion, P3
wished to see co-occurring events in the timeline view so she could
easily recognize other possible reasons for seizure such as a recent
diagnosis of alcoholic disorder. While the scatter plot shows the
correlation between events, it is hard to tell when a correlated event
occurs. Participants commented that what they really cared about
was the chronicity of events. They wished to see trajectories of
co-occurring events in the timeline view.

The tool should provide more support to express exploratory
queries and sophisticated temporal patterns. The query interface
in Cadence can be used to specify temporal patterns such as “dis-
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Figure 2: Hovering over an event shows the flow of patients condi-
tioned on this event.

charged from a hospital ten days after transferred into the ICU.”
However, participants found it hard to define a query to answer more
open-ended questions such as “are there groups of patients that are
different from other groups of patients in the way that we are not
aware of?” Furthermore, since medical events in the EHR dataset
were encoded with low-level codes in CPT, ICD, and RxNorm, par-
ticipants often had to manually bundle multiple low-level codes
based on their clinical questions. It is cuambersome since there are
many codes. While Cadence allows users to aggregate events using
a slider, participants found it hard to interpret which events were
aggregated together when moving the slider. Furthermore, when
informed that this dynamic event aggregation feature was based
on ICD and CPT hierarchies, P2 said, “ICD and CPT hierarchies
should not be used to infer event aggregation strategies, since these
hierarchies are primarily designed for billing. They do not reflect
the appropriate bundling clinicians need to answer their questions.”
Participants wished to have better tool support for medical event
bundling.

4 TooL DESIGN

Based on the feedback from the formative study, we designed an
interactive visualization interface for exploring temporal patterns in
EHRs, as shown in Figure 1.

4.1 A Holistic View of Temporal Patterns

To help users recognize temporal patterns in a large EHR dataset,
our interface provides a holistic view of medical events in different
timeline windows. Users need to first define an anchoring point
to initiate the visualization, such as the first prescription of any
antidepressants. We choose to ask users to provide an anchoring
point since patients’ health record often span across many years and
the resulting timeline view can be extremely lengthy and complex
without a focus. By default, our interface shows frequent medical
events in multiple time windows up to a year before and after the
anchoring point. Users are allowed to add or delete a time window
to adjust the timeline view. The width of the flow between two
events indicates how likely patients having one event would then
have another event, which is a kind of conditional probability.

|Patient (x,1) N Patient(yy)]
|Patient (x;1)|

Flow(x;1 — yp) =

In the formula above, the function Patient(x;) returns the set of
patients who have medical event x in the time window ¢. An alterna-

tive way to compute the flow width is to use the relative frequency

|Patient (x;1) N Patient (y;)| .
ICohort Size] . After consulting

our clinician collaborators, we decided to use conditional probability
since it was more preferred to interpret the time dependency between
events in a temporal pattern. In addition, when a user hovers over an
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Figure 3: A user pinned an event and viewed positively or negatively
correlated events in the timeline view.

event in the timeline view, the flows in a sub-cohort with that event
are highlighted and overlaid on the current timeline view, as shown
in Figure 2.

If a user is interested in one particular event, she can pin the event
in the timeline view. Our interface will then test the correlation
between the pinned event and every other events in the timeline view.
Currently, we use chi-squared test of independence to calculate
the coefficients and p-values. For example, if a user pins the first
prescription of citalopram, other correlated events with statistical
significance, such as admitted to an emergency room a week before
the citalopram prescription, are highlighted in the timeline view, as
shown in Figure 3. Yellow color indicates a positive correlation,
while blue indicates a negative correlation. The color hue is adjusted
based on the correlation coefficient value. The default p-value and
coefficient thresholds are 0.05 and 0.01 respectively. A user can
adjust these thresholds along with other thresholds, such as the
number of events rendered in each time window, using the control
knobs on top of the interface.

4.2 Information Scents

Due to the high dimensionality of EHRSs, the timeline view often
renders many medical events in different time windows. Based on
our formative study, users may find it hard to navigate through these
many events and decide which one to investigate for the next step.
To address this challenge, we have developed a novel algorithm that
identifies medical events that will lead to a sub-cohort with unique
temporal sequence patterns compared to other sub-cohorts without
these events.

Scent(x;) = |PSet(x;) — PSet(—x;)| x |PSet(—x;) — PSet (x;)|

The formula above shows the method to calculate the information
scent of an event x in a time window ¢. The function PSet(x;)
returns the set of temporal patterns in a sub-cohort of patients with
X, while PSet(—x;) returns the set of temporal patterns in a sub-
cohort without x;. We choose to multiply the number of unique
temporal patterns in the sub-cohort with x; and the number of unique
patterns in the sub-cohort without x;, since during the experiment,
we observed that selecting an event sometimes split the cohort to two
sub-cohorts, one of which contains a super set of temporal patterns
of another. Currently, we use a frequent closed sequence mining
algorithm called BIDE [28] to identify temporal sequence patterns
in a cohort. Since it is computationally expensive to run frequent
sequence mining on the fly, we precompute all frequent sequence
patterns in the entire cohort using a minimum support threshold of
100. In other word, each identified pattern is followed by at least
100 patients. For each sequence pattern, we also cache the IDs of
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those patients who follow the pattern. In this way, we can efficiently
compute PSet (x;) by checking whether there are at least 100 patients
in the intersection of the patients with x; and the patients that support
a pattern p in the pre-computed pattern set.

As shown in Figure 1, the events with information scent scores
above a threshold are highlighted in green. The green color hue is
adjusted based on the information scent score. For example, the
surgery events in multiple time windows are highlighted in Figure 1.
This indicates that further investigation of these surgery events will
lead to a sub-cohort of patients with unique temporal sequence
patterns. A user can filter the dataset by selecting one or more of
these events and make further investigation.

4.3 Event bundling

While navigating through medical events in the timeline view, users
can bundle multiple events using conjunction and disjunction opera-
tors to filter events and create a sub-cohort. Users can either add an
event via drag and drop or through a look up table. Our interface also
supports specifying exclusion criteria such as not including an event
x;. Figure 4 shows an example inclusion criterion that bundles three
events. Filtering the dataset with this criterion creates a sub-cohort
of 320 patients who were given either citalopram or sertraline in
their first antidepressant prescription and were then diagnosed with
depressive disorder again a month after the first prescription. Every
time the dataset is filtered, the set of pre-computed sequence patterns
and their supporting patients are also filtered accordingly.

5 DEMONSTRATION

This section describes a usage scenario to demonstrate how clinical
researchers can use our tool to discover interesting temporal patterns
in a cohort. We use the same psychiatry dataset as in Section 3 in this
usage scenario. Suppose Alex is a psychiatry researcher who is con-
ducting an exploratory analysis on the psychiatry dataset. He wants
to find some interesting patterns that he is not aware of before and
use them to form new hypotheses in his research. Alex defines the
first prescription of any antidepressants as an anchoring point. Then
a timeline view is rendered in the interface. While it is interesting to
see the trajectories of patients in such a timeline view, Alex finds it
tedious to look into so many events one by one. Alex clicks on the
“Suggest Events to Investigate” button to solicit some recommenda-
tions from the tool. Several medical events are highlighted in green
to indicate what to investigate next (Figure 1). Alex notices that pa-
tients whose first antidepressant prescription is citalopram are likely
to have unique temporal patterns. He decides to make some further
investigation and pins this event in the timeline view. Then, several
events that are correlated with the first prescription of citalopram are
highlighted in the timeline view (Figure 3). Alex finds that there is
a strong positive correlation between the first prescription of citalo-
pram and the subsequent prescriptions of citalopram, which is not
surprising. On the other hand, Alex is surprised to see a positive cor-
relation between the prescription of citalopram and being admitted
to an emergency. This makes Alex wonder whether this is because
citalopram is a common antidepressant choice for those ER doctors.
Alex also wonders whether other kinds of antidepressants also have
such a positive correlation with ER. He pins the first prescription of
another antidepressant, sertraline, in the timeline view. This time,
the timeline view highlights a different set of correlated events for
sertraline, as shown in Figure 5. Alex notices the first prescription
of sertraline has a positive correlation with radiology procedures
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a week and a month before the first sertraline prescription. This
implies a contrastingly different trajectory compared with patients
who were given citalopram as the first antidepressant. Alex finds this
observation quite interesting. He decides to conduct more rigorous
experiments to validate this hypothesis and check if any scientific
conclusions can be reached.

6 CONCLUSION

This paper presents an interactive visualization interface for explor-
ing temporal sequence patterns in population-level electronic health
records (EHRs). The design of this interface is informed by a forma-
tive study with clinical researchers on their needs and experiences
of using a state-of-the-art visualization tool for EHRs. Three key
features in this tool include: (1) a holistic view of medical events
in different time windows, (2) information scents that guide users
towards sub-cohorts of patients with unique sequence patterns, (3)
a rich set of interactions that allow users to identify statistically
correlated events, bundle multiple events, and define sophisticated
inclusion and exclusion criteria to filter the dataset. Using this tool,
we identified several interesting temporal patterns that were not
known before in a psychiatry dataset.

In future work, we will continue to implement several tool fea-
tures suggested by our clinician collaborators to further support
exploratory cohort analysis. For example, our clinician collaborators
found it hard to compare patterns in two sub-cohorts, e.g., a sub-
cohort of patients who prescribed citalopram and another sub-cohort
who prescribed sertraline. They wished they could compare the
timeline views of multiple sub-cohorts side by side. Some existing
work such as LifeLines2 [29] allows users to compare temporal sum-
maries of two cohorts. It is worth investigating how well such cohort
comparison design can support clinicians’ need. Another promising
tool feature is to recommend what events to bundle together using
concept learning or ontology learning. In addition, we will conduct
case studies with clinical researchers to comprehensively evaluate
the usability and effectiveness of our tool, following the evaluation
guidelines from prior work [27].
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