
98 COMMUNICATIONS OF THE ACM | AUGUST 2021 | VOL. 64 | NO. 8

review articles

I N T H E L A S T 10 years, the computer science (CS)
community has developed novel programming
systems that are transforming our world. Data
journalists are wielding new programming tools to
enrich many major media outlets with interactive
visualizations. Microsoft Excel, the primary data
programming environment for hundreds of millions
of people, now comes with a program synthesis tool
that helps users clean and transform their data,
sparing them from writing painful spreadsheet
formulas. These projects share an important
common factor: they succeed because they make
programming easier. They demonstrate the power
of combining human-computer interaction (HCI)
and programming languages (PL). We organized the
PLATEAU workshop, part of a growing community
that tackles work at this intersection. Here are the
research problems that led us to this hybrid field:

PL → HCI Josh Sunshine began his
career as a PL researcher working on
the design of the Plaid language. He was
drawn to HCI techniques when he tried
to run a user study of Plaid. He found
that users failed to complete even sim-
ple tasks—the language was just too dif-
ficult. His language design work since
then has relied heavily on formative
HCI methods like contextual inquiry
and natural programming elicitation.24
The end result is usable languages and
successful users.

HCI → PL Elena Glassman was
working toward her Ph.D. in HCI
when she developed a tool for visual-
izing student code to help teachers
see where student solutions overlap
and where they differ. For each new
programming assignment, she had
to build a new analyzer, which was te-
dious, time-consuming, and required
her expertise as the tool’s designer.
Later, a colleague introduced her to
program synthesis (PL). She realized
that she could equip her tool with an
example-based synthesizer so that
teachers could author custom analyz-
ers for their own assignments.

HCI ↔ PL In talking to social scien-
tists about their technical challenges,
Sarah Chasins learned that Web scrap
ing was a big obstacle to obtaining data
for their research. She began itera-
tively developing a Programming-By-
Demonstration (PBD) Web automation
tool with its own custom language to
meet the social scientists’ needs. Over
the course of the work, each individual
subproblem demanded both PL and
HCI. For example, combined PL and
HCI approaches put parallel scraping
in reach. To make her new paralleliza-
tion construct usable, Sarah phrased
the problem in terms of a familiar task
(HCI); to implement it, she compiled to
parallel programming primitives (PL).

The rising tide of PL+HCI research
arrives as we observe a few key trends.
First, advances in language engineer-
ing support make it easier for anyone
to develop new languages. Second,
methodological and theoretical innova-
tions in HCI make it easier than ever to

PL and HCI:
Better
Together

DOI:10.1145/3469279

Collaborations between two communities
have unearthed a sweet spot for future
programming efforts.

BY SARAH E. CHASINS, ELENA L. GLASSMAN, AND JOSHUA SUNSHINE

http://dx.doi.org/10.1145/3469279

AUGUST 2021 | VOL. 64 | NO. 8 | COMMUNICATIONS OF THE ACM 99

I
M

A
G

E
 B

Y
 A

N
D

R
E

Y
 P

O
P

O
V

study humans doing rich and complex
computing tasks like programming,
which lets us apply HCI techniques to
language development. Third, broad
and diverse new audiences are seeking
automation.

 ˲ On the basis of these trends and
our own knowledge of the field, we have
identified a few key directions, sum-
marized in the accompanying figure,
that HCI and PL experts should explore
to take full advantage of the combined
power of HCI and PL:

 ˲ HCI practitioners can benefit from
new tools that make it easy to build
domain-specific and general-purpose
programming languages. However, us-
ers need help writing safe and correct
programs, and PL techniques can help.
Finally, users may not always want to
write code directly; to balance ease-of-
use with the power and flexibility of

programming, our interfaces should
give users multiple ways to express
their intent.

 ˲ PL practitioners can use need-
finding techniques to identify high-
impact problem domains or pro-
grammers’ current and future pain
points. They can make better design
decisions via cognitive and behavioral
theory where those theories are avail-
able. Where theory is not available,
they can make better design decisions
by leveraging iterative design cycles

that incorporate user feedback.
The remainder of this article de-

scribes misconceptions that have in-
hibited work at the intersection of
these two subfields, how each subfield
can benefit from the other, and the
kinds of dramatic research successes
that result from successful PL+HCI
unions. Finally, we discuss the direc-
tions for future work and how they will
deliver important new languages and
interfaces. Our key takeaways are sum-
marized in Table 1.

Table 1. Key directions for HCI experts looking to integrate PL practices and PL experts
looking to integrate HCI practices.

To interface designers: To language designers:

Give users PLs Pick good problems,

But help them use PLs responsibly, Develop theories of human capabilities and behavior,

And don’t expect code alone. And get frequent user feedback when you lack theory.

100 COMMUNICATIONS OF THE ACM | AUGUST 2021 | VOL. 64 | NO. 8

review articles

should be offloaded to specialized pro-
gram generation tools.

Misconception: PL just makes new
general-purpose languages. Anoth-
er common misconception we hear
about PL research is that it is all about
creating new general-purpose pro-
gramming languages. Since the most
popular languages are at least 20 years
old, they ask, has the programming
languages community had any im-
pact? Some even argue that PL research
is stagnant. In fact, only a tiny fraction
of papers at programming languages
conferences (<1%) discuss new gen-
eral-purpose language designs. Most
research investigates novel implemen-
tation techniques, program analyses,
verification and synthesis techniques,
tools to support language engineers,
and new language features. Popular
languages are taking advantage of that
work as they evolve. For example, the
tremendous performance improve-
ments in JavaScript engines were built
on just-in-time compilation tech-
niques developed by PL researchers.

Misconception: PL can’t benefit
from human factors research. Some
researchers contend that HCI meth-
ods are not applicable to programming
languages because they are complex
learned artifacts. The benefit of new
language constructs may only come
after substantial education and expe-
rience, and they believe HCI methods
are limited to tools for end users and
novices. In fact, HCI methods have
been used to study everything from
nuclear power plant control systems
to augmented reality and flight con-
trol systems. Another misconception
we hear from PL practitioners is that
HCI methods are only useful for sur-
face concerns like fonts, colors, and
layout. HCI is not, and has never been,
restricted to purely surface-level or vi-
sual features. It can encompass every-
thing from the user’s mental models
as they learn a new tool to the class of
information passed between user and
tool to the set of abstractions that lets
them express their needs.

Misconception: HCI is all about
evaluation. Another common one:
HCI is just about evaluating interfaces
via users studies. HCI has never had
a narrow focus on purely evaluative
work. Over the course of its 40-year
history, the HCI community has de-

What Are We Talking About Here?
HCI is concerned with creating new
ways of interacting with computers,
using computers to enhance human-
to-human interaction, and studying
how existing systems affect individuals
and society. PL is concerned with the
theory, design, and implementation
of programming languages, program
analyses, and program transforma-
tions. This article is devoted to work
that combines PL and HCI techniques
to advance the goals of either field.
However, many other fields and sub-
fields consider how we can use pro-
gramming languages to serve humans.
We provide pointers to a few of the
most relevant fields here:

Software engineering. PL, HCI,
and software engineering (SE) have a
key overlapping interest: getting com-
puters to do what we want. Modern
PL-HCI research often ends up at SE
venues as the closest fits in today’s
conference landscape, but much of the
work at the PL-HCI border does not fit
naturally within SE’s scope of interest.
In particular, SE primarily focuses on
professional software engineers, and
many PL-HCI works are aimed at other
audiences.

Psychology of programming. The
psychology of programming (PoP)
community has a long history of study-
ing everything from the cognitive work
of individual programmers to how they
deal with large codebases to how they
work in engineering teams. (See Black-
well et al.4 for an overview of how the
field evolved from the late 1960s into
the present.) This critically important
work has unfortunately had limited im-
pact on mainstream PL.14,29 This article
advocates for more work that crosses
the boundaries between PL and HCI,
but we hope readers will recognize that
many of the same arguments apply for
crossing the disciplinary boundaries
between PL and PoP.

Computer science education. CS
education (CSEd) research, because
it focuses on interventions that make
it easier for novices to learn CS, often
involves forays into programming lan-
guages and tools. For example, con-
sider the Alice9 and Scratch32 projects,
which set off the modern interest in
block-based editors and structure edi-
tors. This style of CSEd work often ad-
vances HCI goals, but like SE it empha-

sizes a particular audience—novice
programmers who want to learn CS—
and a particular set of goals.

End-user programming. This sub-
field has a long, rich history and, like
SE and CSEd, an emphasis on a par-
ticular subset of users. In this case, the
target audience excludes professional
software developers and includes us-
ers in other domains who need com-
putational support for their goals. The
body of work in end-user programming
(EUP) extends back to “A Small Matter
of Programming,”26 and it remains an
active domain.18,21

Some of the work in the intersection
of PL and HCI fits neatly into these re-
lated communities, and some of it
does not. Certainly, the new collabo-
rations between PL and HCI research-
ers are not the first efforts to tackle the
goals laid out in this article—see for
example Kay,17 Myers et al.,24 and Pane
et al.,28 in addition to the works cited
earlier. However, this article highlights
the work we can do when we bring
HCI and PL techniques together at the
same table that we cannot do in isola-
tion. Substantive collaboration across
these fields—and with SE, PoP, CSEd,
and EUP!—offers a promising route
toward usable languages and powerful
interfaces. We are excited to see what
these subfields can do together as they
begin a fresh wave of cross-disciplinary
collaborations.

Common PL+HCI Misconceptions
We begin by addressing a few of the
misconceptions that sometimes stand
in the way of PL-curious HCI research-
ers and HCI-curious PL researchers.

Misconception: PL doesn’t care
about people. This common miscon-
ception reflects the idea that PL re-
searchers only care about logic and
proofs, or only about compiler per-
formance—not about people. In fact,
much of the field’s work on language
features and developer tools has been
driven by an interest in the user expe-
rience. Although work that brings HCI
techniques to bear on PL problems is
still fairly young, the interest in mak-
ing programming languages and tools
more usable is longstanding. For in-
stance, the entire program synthesis
community sprang up around the idea
that some programming tasks are eas-
ier for machines than for humans and

AUGUST 2021 | VOL. 64 | NO. 8 | COMMUNICATIONS OF THE ACM 101

review articles

veloped methods for engaging users
in the entire iterative design cycle. At
the beginning of the design process,
need-finding and formative studies
offer low-cost ways to identify exist-
ing pain points and anticipate usabil-
ity problems early. Throughout the
design process, a vast space of HCI
methods—for example, heuristic eval-
uation, cognitive walkthroughs, “Wiz-
ard of Oz” studies, rapid prototyping,
think-aloud studies, natural program
elicitation—can give developers more
information to make better-informed
design decisions.

Misconception: HCI is just imple-
menting what users say they want. An-
other misconception, about formative
studies in particular, is that using HCI
during the design process means sim-
ply implementing what users say they
want. This is the Steve Jobs, Henry Ford
“If I had asked people what they want-
ed, they would have said faster horses”
concern. Conducting formative stud-
ies does not have to mean asking us-
ers what they want and then delivering
what they request. Some need-finding
research involves listening to user re-
quests; but a great deal is focused on
observing users’ behavior in a given
context, even testing hypotheses about
their behavior. Via iterative design of
prototypes, researchers can expose po-
tential users to multiple hypothetical
futures they would never have request-
ed and solicit feedback. These strate-
gies empower potential users to shape
technologies that have never existed
before, putting those technologies on
track to be useful and usable.

Misconception: Doing HCI is too
hard. This misconception usually
revolves around either the idea that
user studies need to include dozens of
people to be valid or the idea that the
IRB approval process is grueling. In
fact, even studies with small numbers
of participants can contribute impor-
tant insights and evaluations. The key
is to include enough participants to
provide evidence of the claims we want
to make. If we build a tool for rare do-
main experts, we may run a study with
five people that focuses on qualita-
tive insights. Or, if we expect our tool
to have a large effect on outcomes,
enrolling 10 participants in a within-
subjects study may be enough to show
meaningful differences between their

experiences using the experimental
and control interfaces. If the class of
potential participants is large, we may
run a medium-sized lab study of 20–25
people or a large online study that fo-
cuses on quantitative insights. Finally,
if we want a lightweight way to check
our ideas during a design process, it
can be enough to watch over a friend’s
shoulder and hear them talk through
using our prototype; this informal, n=1
‘study’ can be enough to reveal critical
design flaws or spark new ideas!

IRB processes vary by institution,
but most have official low-risk (‘ex-
empt’) submission categories for
which the approval process is light-
weight and fast—and a vast majority
of PL+HCI studies fall into these cat-
egories. Colleagues who do exempt
human subjects research are a great
resource for institution-specific advice
about IRB processes.

HCI and PL: A Two-Way Street
While PL and HCI have had relatively
little cross-over in terms of collabora-
tions and shared literature, each com-
munity has developed techniques that
can help researchers in the other field.
Here we describe a few concrete ways
that HCI concepts and techniques can
improve PL outcomes; PL concepts
and techniques can improve HCI out-
comes; and PL and HCI researchers
can integrate their complementary ex-
pertise to advance goals that matter in
both communities.

PL → HCI: The power of PL-backed
interfaces. Languages are powerful
interfaces for communicating with
computers. Unlike typical menu- and
button-based interfaces, languages
are compositional: they provide a set
of primitives and a means of combina-
tion, empowering users to create new
primitives out of existing ones. If they
are Turing-complete, they can describe
any computable function. Even a non-
Turing-complete language can express
an infinite space of functions. While
both GUIs and languages are often de-
signed around making it easy for users
to say common things, a language em-
powers users to say uncommon things
too. Users can even interact with
standard interface elements instead
of code and still wield the power of a
programming language, if the inter-
face automatically generates programs

for the user (for example, via program
synthesis). These PL-backed interfaces
can help us realize the vision for pow-
erful interfaces advanced by Shneider-
man in his seminal “Direct Manipula-
tion.”34 In particular, the expressive
power of programming languages can
elicit the “desire to explore more pow-
erful aspects of the system” that is of-
ten lacking from GUIs.

Building PLs can be easy. Language
engineering has become easier with
the development of new, easier lan-
guage implementation support tools
like language workbenches and pars-
er generators. Designing task-relevant
abstractions and instantiating them
in a domain-specific language now
takes only minimal training. For HCI
work that benefits from the power
and flexibility of a language, these
new PL tools can support interface
and system designers in making new
languages, abstractions, and domain-
specific languages.

Using PLs can be easy. PL advances
like synthesis and modern retargeting
let us ask users for a little work and get
a lot in return. With techniques like
programming by demonstration and
programming by example, users can
provide non-code specifications (for
example, input-output pairs) and get
a program in return. With retargeting
approaches, we can take programs
originally intended for one purpose
and reuse them to create new artifacts.

Using PLs correctly. PL, like all other
areas of computer science, brings tech-
nical capabilities to the table that can
help address HCI concerns. For exam-
ple, the PL community has developed
verification techniques to the point
that they can check more than simple,
low-level properties; they can verify
functional correctness, safety, securi-
ty, accessibility, even adherence to so-
cial norms,30 and other properties that
matter to the HCI community. Many
PL techniques, such as program analy-
sis, bug fixing, and verification, can
offload tasks to the machine, reducing
the cognitive load of human operators
and designers. These sophisticated
techniques are already being applied
in professional programming environ-
ments. As more end users begin auto-
mating tasks, we see opportunities to
apply these same techniques to their
computer and robot interactions.

102 COMMUNICATIONS OF THE ACM | AUGUST 2021 | VOL. 64 | NO. 8

review articles

reusable abstractions. The HCI com-
munity has deep expertise in develop-
ing abstractions that are easy to learn
or match the existing mental models of
their target users. With rich histories of
abstraction design across both fields, a
union of these forms of expertise holds
the promise of delivering useful, us-
able, and powerful abstractions.

Interactive and non-interactive
environments. Programming envi-
ronments that demand a mix of in-
teractive and non-interactive modes
are common in the real world. For ex-
ample, programmers draft code in a
relatively non- interactive text window,
then refactor the same code via an in-
teraction with their editor of choice.
HCI has developed rich theories of
interactive computing environments,
while PL has long studied how to shape
languages to produce good experienc-
es for non-interactive programming
settings. For modern programming
systems that demand both modes, it
is the combination of both PL and HCI
expertise that offers the guidance we
need (also, see the sidebar “Can We
Simply Stage HCI and PL Expertise?”).

What It Looks Like
When It Goes Well
Bringing HCI and PL expertise togeth-
er at the same table lets us meet chal-
lenges that neither field can accom-
plish alone. This section highlights
how the union of these fields equips us
to bring programming to new audienc-
es, improve the programming experi-
ence for novices and experts alike, and
fine-tune the division of labor between
human and machine.

PL+HCI brings the power of pro-
gramming to new audiences. Non-
coders want programs. They want
programs that collect, analyze, and vi-
sualize data; programs to control their
own phones, computers, and other de-
vices; programs to eliminate boring,
repetitive tasks. But for now, there is
still a gap between the programming
skills of the average adult and the skills
required to write the programs they
want or need.

The union of PL and HCI tech-
niques can close that gap by dramati-
cally reducing the programming skills
required to automate important tasks.
Modern domain-specific languages
put simple but useful programs in

HCI → PL: Iterative, user-centered
design. User-centered design focuses
us on assessing the usefulness and
usability of our languages and tools
throughout the design process—not
just in a final evaluative step. Need-
finding studies let designers iden-
tify key needs, stumbling blocks, and
challenges before the design process
even begins. When we tackle needs
that have already been validated via
need-finding studies, we have good
reason to believe our languages or
tools can solve real users’ problems.
Formative studies throughout the de-
sign process let us progress steadily
toward usability during the language
or tool building process. Solicit-
ing feedback from users at multiple
points in the design process means
we are less likely to end up with user-
antagonistic tools at the end, when we
have already sunk years of time, ener-
gy, and engineering into them.

Theories of human cognition and
behavior, design heuristics. Making
every design decision based on direct
user observation would be expensive,
time-consuming, and impractical. De-
sign heuristics, for example, Green et
al.12 describe elements of interactive
systems that designers have found

over and over are critical to usability,
like the visibility of the system’s status
or the ability to ‘undo’ an action. Theo-
ries of human cognition and behavior
make predictions about what users
will, will not, and cannot do in any
system we construct for them. Like de-
sign heuristics, theory predictions are
guidelines to narrow our design space
and form expectations that may or may
not be violated when the user and the
system ultimately interact. Some pro-
gramming tools are already designed
on the basis of programming-specific
behavioral theory, for example: under-
standing how programmers backtrack
enabled researchers to develop selec-
tive undo in Integrated Developer En-
vironments (IDEs).37 Developing more
and deeper theory can pay dividends
for the entire programming languages
community.

Evaluation: Beyond user studies.
Many programming systems develop-
ers are interested in making claims
about their advantages for users. HCI
has developed many methods for eval-
uating these claims. These include tra-
ditional user studies in the lab but also
low-cost heuristic methods, deeper
long-term case studies,35 and rigorous
analysis of field data like user logs. To
back up the strongest and most excit-
ing claims, we may need multiple eval-
uation methods—for example, user
logs to acquire large-scale data and a
lab study to understand the otherwise
contextless log statistics. Readers in-
terested in learning more about the di-
verse set of human-factors evaluations
we can apply to programming interac-
tions are encouraged to read Myers et
al.’s excellent essay, “Programmers Are
Users Too: Human-Centered Methods
for Improving Programming Tools.”25

HCI ↔ PL: In a few domains, both
HCI and PL currently advance the state
of the art, although these advances are
not always shared across the disciplin-
ary divide. In these domains, we hope
to engender a richer culture of cross
pollination, in the belief that both
communities can benefit from the
findings of the other.

Abstraction design. Each subfield
has its own culture and design goals.
They both contribute to features that
matter to users, but often to different
sets of features. The PL community has
deep expertise in developing modular,

Design choices interact. We cannot
ask the PL expert to design the
abstractions, deliver them to the HCI
expert for a second pass, and expect
the optimal design as a result. These
choices interact. Design decisions
that we make to improve learnability
have implications for how we achieve
modularity, and vice versa.

To achieve tools and languages
that meet the goals of both subfields,
we need HCI and PL expertise at
the same table. It is not enough to
know what users want unless we
can make a language, synthesizer,
or programming environment
that delivers it. Likewise, making
a new language, synthesizer, or
environment will not advance our
goals unless the new artifact meets
real user needs.

Can We
Simply Stage
HCI and
PL Expertise?

AUGUST 2021 | VOL. 64 | NO. 8 | COMMUNICATIONS OF THE ACM 103

review articles

reach in domains like building web-
sites36 or automating smart home ac-
tions (IFTTT). With HCI, we can learn
the kinds of inputs users are willing
and able to provide; with PL, we can in-
vent techniques that turn those inputs
into the programs users need. Already,
modern program synthesis empowers
non-coders to build new voice assis-
tant skills via a conversation with their
phone;20 write feedback about one stu-
dent program to propagate feedback
to many students’ programs;15 scrape
large datasets from the Web by dem-
onstrating how to scrape one row;7
transform and clean data by giving ex-
amples of a few transformed items or
cells;13,19 and visualize or model a data-
set by providing just the dataset.6,23

PL+HCI lets us use formal reason-
ing to create richer programming ex-
periences. Some work that starts as
advances to programming language
theory or implementation ultimately
invents novel programming interac-
tion techniques. The simplicity of
Smalltalk’s object model enabled the
language designers to develop many
novel programming conveniences
that we now take for granted—for ex-
ample, an integrated development en-
vironment, reflection, and unit testing
frameworks.17 Work that starts as an
effort to make incomplete programs
well-typed can ultimately let us build
programming environments that work
just as well for partial programs as
complete programs.27 Work that starts
as an effort to create bidirectional
mappings between program inputs
and outputs can let us build program-
ming environments in which users can
program by editing code or by tweak-
ing a diagram.16 By deeply considering
formal models of programming, we
can ultimately produce richer interac-
tive programming systems.

PL+HCI produces better decisions
about the division of labor between
the human and the machine. Com-
puters are better at some tasks than
humans, and vice versa, and this land-
scape shifts as computing advances
and education evolves. In the classi-
cal model of programming, the pro-
grammer instructs the machine, and
the machine follows the instructions.
Modern programming tools can di-
vide programming tasks between hu-
man and machine in new and creative

ways. For example, reasoning about
whether a robot upholds human so-
cial norms (for example, maintaining
eye contact) is usually left to the hu-
man programmer, but new human-
robot interaction work offloads this
task to a verifier,30 effectively erecting
guardrails that keep programmers
from violating their own design goals.
Synthesis tools let users offer input-
output examples and other non-code
specifications when those specifica-
tions are easier to provide than the
code itself. Rather than requiring
humans to hand-write low-level im-
age processing pipelines, the Halide
project31 allows programmers to write
in a high-level language, delegating
the low-level scheduling details to
the computer. This new generation
of tools leverages a diverse array of
techniques, everything from program
synthesis and machine learning to do-
main-specific languages and program
verification.

Obstacles
There are two key obstacles to accom-
plishing our vision of united PL and
HCI. First, most PL and HCI research-
ers lack knowledge of each other’s
tools and methods. The prerequisites
for work in these fields are disjoint.
Many, even most, researchers in PL or
HCI enter one of these subfields with-
out learning even the basics of the
other.

Second, the demands for rigor in
the PL and HCI communities do not
always compose. We need knowledge
of both communities to selectively ap-
ply the standards of each community
as appropriate. Not all tasks should
be neatly evaluated in a one-hour
controlled user study. Not all claims
require mathematical proofs. We are
in danger of smothering exciting new
research if we ask authors to check
boxes that make sense for the single-
subfield contributions we have seen
before but not for the new contribu-
tions they are offering.

We believe that learning about both
fields and their intersection is the
best remedy to both these obstacles.
We hope this article’s glimpse into
PL+HCI research inspires readers to
learn more. Readers who want a pre-
view of the kinds of contributions that
will push this field forward—the kinds

The union of PL
and HCI techniques
can dramatically
reduce the
programming
skills required
to automate
important tasks.

104 COMMUNICATIONS OF THE ACM | AUGUST 2021 | VOL. 64 | NO. 8

review articles

ply to programming. It is common in
other disciplines to write papers that
adapt or transfer theory from one do-
main to another. We know of no exam-
ples in programming languages litera-
ture, but there are many such papers
in HCI1 and software engineering.2 As
we establish or adapt behavioral theo-
ries of programming, language de-
signers can base design decisions on
predicted user behavior, rather than
direct experimentation with target us-
ers, to quickly make languages more
useful and usable.

Contribution: Theory development
and theory transfer, for predicting hu-
man cognition and behavior during in-
teraction with programming systems.

Iterative refinement. We can learn
from users throughout our PL design
processes. Formative studies enable
designers to learn from users before
implementing a complete system. For
instance, we can conduct formative
user studies with incomplete proto-
types, learning where users stumble
and what features help them. Such
studies can help us ensure our lan-
guage designs are usable, learnable,
and not error-prone before substantial
effort is put into developing formal-
isms, proofs, compilers, and other
high-effort artifacts. Methods for solic-
iting user feedback during the design
process include surveys, interviews, fo-
cus groups, natural programming elic-
itation, think-aloud studies, “Wizard
of Oz” studies in which a human plays
the role of the compiler, and studies
with other low-cost prototypes. We can
evaluate some of the same questions
without even recruiting users, for ex-
ample, via cognitive walkthroughs or
heuristic evaluation. HCI venues often
publish papers describing such forma-
tive studies and the resulting designs.
Programming language designs that
have been iteratively refined via forma-
tive methods should similarly find a
place in the literature.8 As designers,
we should get input from users early
and often.

Contribution: Language and tool
designs guided by user-centered, itera-
tive design processes.

HCI → PL summary. With a new,
broader, and more diverse audience
interested in computing, we face an ex-
citing time in our field’s history. As we
develop more of the contribution types

of papers we should be accepting into
our favorite venues—should read on to
the next section for a taste of how we
advance to the vision of productively
integrated HCI and PL.

Where Do We Go Next?
In this section, we present a vision of
where this hybrid field should go now.
We highlight a few types of contribu-
tions that harness PL and HCI’s com-
bined strengths. Readers who want
to participate in the PL+HCI field can
read on for a guide on how to contrib-
ute. We give specific recommenda-
tions for those with HCI backgrounds
and those with PL backgrounds.

PL practitioners: Consider the fol-
lowing contribution types. We believe
a few key contribution types have the
potential to dramatically improve PL
practice. By borrowing techniques
from HCI, PL practitioners can pro-
duce higher-impact languages and
tools, make their languages more us-
able by novices and experts, and make
it easier for future language designers
to produce usable languages.

Need-finding studies. Need-finding
studies help us produce a rich un-
derstanding of the needs of a target
population and ultimately identify the
problems that real users need to solve.
Contextual inquiry, interviews, sur-
veys, analyses of log data, analyses of
forums and StackOverflow, exploratory
user studies—all of these can reveal
important user needs. Need-finding
has played an important role in shap-
ing successful PL projects ranging
from D35 and Vega33 to FlashFill.13 At
their best, need-finding studies pro-
duce needs analyses that are useful not
just for motivating a single project but
for the research community as a whole.

The HCI and SE communities al-

ready publish standalone need-finding
papers for a variety of user populations.
The PL community serves different
populations, with different problems,
using different techniques. We have
started to see excellent need-finding
papers that address these populations,
problems, and techniques, but we have
just scratched the surface.22

Contribution: Standalone need-
finding studies for populations, set-
tings, and tasks that could be particu-
larly well-served by novel programming
language research.

Cognitive and behavioral theory
transfer and development. Psychol-
ogy, cognitive science, linguistics,
and many other fields study the char-
acteristics of human cognition. Their
work offers theories about the classes
of reasoning that humans find easy,
hard, and impossible, with and with-
out training. In the domain of PL de-
sign, a scientific understanding of
how programmers write programs
could guide us to better language
and tool designs. In the 1970s, the
PoP field started building the founda-
tion for this direction, and their work
points us to methods we can reuse
for learning about modern high-level
languages. Critical work in this field
continues, drawing on work in soft-
ware engineering, psychology, CS edu-
cation, and HCI. Although language
design rarely motivates current work
in this area, we see a huge opportunity
to design experiments to generate lan-
guage-relevant theory.

One way to bootstrap theory devel-
opment is to borrow or adapt theories
from other disciplines. Social scienc-
es ranging from psychology and eco-
nomics to cognitive science, organiza-
tional behavior, and learning science
offer behavioral theory that may ap-

Table 2. What can PL practitioners borrow from HCI? This table summarizes three classes
of PL contribution that we can produce by drawing on HCI techniques.

Contribution Key Message Elaboration

Need-Finding Pick good problems If we identify real needs before we begin designing,
we have a better chance of contributing useful,
high-impact programming languages and tools.

Behavioral Theory Develop theories of hu man
capabilities and behavior

Given that user evaluation is time-consuming
and expensive, we can make better design decisions
more quickly if our field builds up theories that
predict user behavior.

Iterative Refinement And get frequent
user feedback when
you lack theory

PL innovation constantly uncovers new design questions.
We can apply user-centered design—a feedback loop
between builders and users, a cycle of evaluations
and redesigns—to inform our decisions in addition
to any applicable theory.

AUGUST 2021 | VOL. 64 | NO. 8 | COMMUNICATIONS OF THE ACM 105

review articles

described in this work, we are poised to
offer useful, usable programming lan-
guages and tools that tackle high-im-
pact problems. Taken together, these
three contribution types, summarized
in Table 2, tell us: Pick good problems,
develop theories of human capabilities
and behavior, and get frequent user
feedback when you lack theory.

HCI practitioners: Consider the
following contribution types. Going
forward, we hope to see a few contri-
butions become more common in the
HCI community, as HCI increasingly
draws on advances in PL. With new PL
techniques, HCI practitioners can de-
liver even more powerful and flexible
interfaces, help users avoid important
classes of failures, and offer acces-
sible new pathways into the world of
computing.

PL-backed interfaces. Where you
might typically design a GUI, consider
giving your users a language—either
a domain-specific programming lan-
guage or a graphical UI that offers the
key components of a language: primi-
tives and means of composition. From
here on, we will refer to the class of in-
terfaces with primitives and means of
composition, whether they are textual
or graphical, as PL-backed interfaces.

PL-backed interfaces offer power
and flexibility, enabling new interac-
tions that other UI types cannot sup-
port. Con- sider the success stories of
languages like D35 and Vega,33 which
could have been encapsulated within
authoring tools, but not without sac-
rificing some expressiveness and user
control. With advances in tools for lan-
guage design and implementation—
including support for domain-specific
languages, language extensions, em-
bedded languages—it is now much
easier to offer PL-backed interfaces.10

Contribution: Developing or study-
ing languages as UIs.

Guardrails to make PL-backed UIs saf-
er. Giving users powerful, flexible PL-
backed interfaces can empower them,
but it can also empower them to make
new mistakes. We can address this by
building guardrails into our UIs, tools
that prevent or catch errors, bugs, and
bad outcomes. For this goal too, PL of-
fers a wealth of techniques for aiding
programmers, everything from verifi-
cation (for example, verifying that a ro-
bot control program makes the robot

compliant with human social norms30)
to program analysis (for example, a
spreadsheet extension that identifies
likely spreadsheet errors based on
discrepancies with other nearby for-
mulas3 or generates spreadsheet tests
automatically11).

Contribution: Developing or study-
ing techniques for enforcing or en-
couraging correct use of PL-backed
interfaces.

Non-code inputs to PL-backed UIs.
Although providing a PL-backed in-
terface can put powerful new com-
puting experiences in reach, it often
takes more than a well-designed lan-
guage to help users unlock a PL’s full
potential. We can help users author
complex programs via PL tools that
write code based on non-code specifi-
cations. Program synthesis paradigms
like programming by demonstration,
programming by example, and pro-
gramming by manipulation offer users
alternative ways to express their intent.
For example, a Helena7 user demon-
strates how to collect the first row of
their target dataset in a standard Web
browser, and Helena synthesizes a pro-
gram that traverses thousands or mil-
lions of webpages to collect the full da-
taset. Programming by demonstration
thus enables social scientists and oth-
er domain experts to collect the data
they need from the Web. Leveraging
new PL techniques lets us design new
interfaces for programming and ulti-
mately brings the power of program-
ming to new audiences.

Contribution: Developing or study-
ing techniques for creating code from
non-code specifications.

PL → HCI summary. We are excited
for the potential of PL-backed inter-
faces in the future of HCI. As our us-

ers face increasingly complex new
computing tasks, now is the time to
put human-centered languages in the
hands of more users. Together these
three contribution types, summarized
in Table 3, offer a simple takeaway
message: Give users PLs, but help
them use PLs responsibly, and don’t
expect code alone.

Fostering HCI+PL research. We
believe the six contribution types dis-
cussed previously—need-finding, be-
havioral theory, iterative refinement,
PL-backed interfaces, guardrails, and
creating code from non-code—can
advance both human-computer inter-
action and programming languages,
that they represent important new
frontiers for both subfields. We want
to invest in these contribution types.
What actions should we take, as indi-
viduals and as a community, to pro-
duce more work like this?

 ˲ For new or aspiring PL+HCI re-
searchers: For new researchers, this ar-
ticle describes classes of work that rep-
resent important but under-explored
contributions. Are you bringing exper-
tise that would help you write a theory
transfer paper? A “guardrails” paper?
As our community is opening to these
topics, now is a great time to consider
these directions. If you’re looking to
test-drive this path, start attending
talks. Take a PL class if you are more
familiar with HCI, take an HCI class if
you are more familiar with PL, or take
one of the new crop of courses at the
HCI-PL intersection. Start collabora-
tions across the boundary. Find ways to
publish the work in multiple but sub-
stantial coherent pieces, if necessary,
to reach both fields.

 ˲ For reviewers: This article provides
an overview of why these contribution

Table 3. What can HCI practitioners borrow from PL? This table summarizes three classes
of HCI contribution that we can produce by drawing on PL techniques.

Contribution Key Message Elaboration

PL as UI Give users PLs, Giving your users a PL gives them a powerful tool
that offers flexibility, expressiveness, and control.

Guardrails But help them
use PLs responsibly,

Both fields offer methods for building in guardrails—checks
in the languages, tools, and environments that make errors
less likely when we give users languages as interfaces.
For example, static analysis, verification, and type systems
can all offer important guardrails.

Beyond Code And don’t expect
code alone.

Don’t expect code alone to be enough to put the target
programs in reach, especially for complex domains.
Sometimes users need further aids, some of which can come
from PL—for example, program synthesis, programming
by demonstration, anything that makes code out of non-code,
new editors, new programming experiences.

106 COMMUNICATIONS OF THE ACM | AUGUST 2021 | VOL. 64 | NO. 8

review articles

19. Le, V. and Gulwani, S. FlashExtract: A framework
for data extraction by examples. In Proceedings of
the 2014 Conf. Programming Language Design and
Implementation.

20. Li, T., Radensky, M., Jia, J., Singarajah, K., Mitchell,
T., and Myers, B. Pumice: A multi-modal agent
that learns concepts and conditionals from natural
language and demonstrations. In Proceedings of the
2019 Symp. User Interface Software and Technology.

21. Lieberman, H., Paternò, F., and Wulf, V. End User
Development (Human-Computer Interaction Series).
Springer Verlag, Berlin, Heidelberg, 2006.

22. Ma’ayan, D., Ni, W., Ye, K., Kulkarni, C., and Sunshine,
J. How domain experts create conceptual diagrams
and implications for tool design. In Proceedings of the
2020 Conf. Human Factors in Computing Systems.

23. Moritz, D., Wang, C., Nelson, G., Lin, H., Smith, A.,
Howe, B., and Heer, J. Formalizing visualization design
knowledge as constraints: Actionable and extensible
models in draco. IEEE Trans. Visualization and
Computer Graphics 25, 1 (2018), 438–448.

24. Myers, B., Pane, J., and Ko, A. Natural programming
languages and environments. Commun. ACM 47, 9
(Sept. 2004), 47–52; https://doi.org/10.1145/
1015864.1015888.

25. Myers, B., Ko, A., LaToza, T., and Yoon, Y. Programmers
are users too: Human-centered methods for improving
programming tools. Computer 49, 7 (2016).

26. Nardi, B. A Small Matter of Programming: Perspectives
on End User Computing. MIT Press, Cambridge, MA,
USA, 1993.

27. Omar, C., Voysey, I., Hilton, M., Aldrich, J., and
Hammer, M. Hazelnut: A bidirectionally typed
structure editor calculus. In Proceedings of the 2017
Symp. Principles of Programming Languages.

28. Pane, J. and Myers, B. Usability issues in the design of
novice programming systems. Project status report,
08, 1996.

29. Pane, J. and Myers, B. The influence of the psychology
of programming on a language design: Project status
report, 06, 2000.

30. Porfirio, D., Sauppé, A., Albarghouthi, A., and Mutlu,
B. Authoring and verifying human-robot interactions.
In Proceedings of the 2018 Symp. User Interface
Software and Technology.

31. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S.,
Durand, F., and Amarasinghe, S. Halide: A language
and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. In
Proceedings of Programming Language Design and
Implementation, 2013.

32. Resnick, M., et al. Scratch: Programming for all.
Commun. ACM 52, 11 (Nov. 2009), 60–67; https://doi.
org/10.1145/1592761.1592779.

33. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and
Heer, J. Vega-lite: A grammar of interactive graphics.
IEEE Trans. Visualization and Computer Graphics 23, 1
(2016), 341–350.

34. Shneiderman, B. Direct manipulation: A step beyond
programming languages. Computer 16, 8 (1983), 57–69.

35. Shneiderman, B. and Plaisant, C. Strategies for
evaluating information visualization tools: multi-
dimensional in-depth long-term case studies. In
Proceedings of the 2006 AVI Workshop on BEyond
Time and Errors: Novel evaluation methods for
information visualization, 1–7.

36. Verou, L., Zhang, A., and Karger, D. Mavo: Creating
interactive data-driven web applications by authoring
html. In Proceedings of the 2016 Symp. User
Interface Software and Technology.

37. Yoon, Y. and Myers, B. Supporting selective undo in a
code editor. In Proceedings of the 2015 Intern. Conf.
Software Engineering.

Sarah E. Chasins (schasins@cs.berkeley.edu) is
an assistant professor of Electrical Engineering and
Computer Science at University of California, Berkeley,
CA, USA.

Elena L. Glassman (glassman@seas.harvard.edu) is an
assistant professor of computer science and the Stanley
A. Marks and William H. Marks Assistant Professor at
the Radcliffe Institute for Advanced Study at Harvard
University, Cambridge, MA, USA.

Joshua Sunshine (sunshine@cs.cmu.edu) is a senior
Research Fellow in the School of Computer Science at
Carnegie Mellon University, Pittsburgh, PA, USA.

types are necessary, why they hold the
promise of enriching both fields. We
encourage you to read more on these
topics, but we hope this article is rea-
son enough to think twice before dis-
missing these contributions, even if
the papers strike you as unusual or un-
precedented at first.

 ˲ For advisors and mentors: In-
creasingly, we find researchers are
succeeding not despite but because
of their cross-disciplinary research.
Students considering work at this in-
tersection are not sacrificing job pros-
pects. And as reviewers in both com-
munities are becoming more open
to work that combines contributions
in both PL and HCI, there is less and
less reason to limit your students to a
single domain.

 ˲ For the research community as a
whole: Venues like VL/HCC, PLATEAU,
PPIG, and LIVE have long track records
of recognizing and evaluating work at
the intersection of PL and HCI. Howev-
er, the work needs to appear at flagship
conferences to thrive. These flagship
conferences should invite reviewers
with PL+HCI expertise and evaluate
the work rigorously based on appropri-
ate evidence standards.

 ˲ For the industrial and practitio-
ner community as a whole: We want
to see powerful PL-backed interfaces
and usable programming languages
reaching real users. We should be
pouring resources and engineering ef-
fort into making it easier for humans
to control computers. Few companies
have engineering teams working on
language design and language us-
ability questions jointly. If you sell a
product—cloud computing resourc-
es, data analysis suites—that people
use via programming, or that people
may want to automate, spin up an en-
gineering team that joins PL and HCI
expertise.

Conclusion
Computers have given us services,
scientific results, and communica-
tion modes that we would not have
achieved without them—but many
modern interactions with computers
feel constrained. Many users feel as
if they work in service of the machine
rather than the other way around.
Even expert programmers still spend
a surprising amount of time wrestling

with the command line or tackling
painful sysadmin tasks. If we are suc-
cessful in this PL+HCI effort, it will be
easier for us—programming experts,
novices, and previously unreached us-
ers alike—to communicate our intent
quickly and accurately to computers. It
will be easier for us to rally computers
to our billions of exciting and diverse
human goals.

References
1. Alkhatib, A. and Bernstein, M. Street-level algorithms:

A theory at the gaps between policy and decisions.
In Proceedings of the 2019 Conf. Human Factors in
Computing Systems.

2. Barik, T., Ford, D., Murphy-Hill, E., and Parnin, C. How
should compilers explain problems to developers?
In Proc. Joint Meeting of the Euro. Software
Engineering Conf. and Symp. Foundations of Software
Engineering, 2018.

3. Barowy, D., Berger, E., and Zorn, B. Excelint:
Automatically finding spreadsheet formula errors. In
Proceedings of the ACM on Programming Languages 2
(2018), 1–26.

4. Blackwell, A., Petre, M., and Church, L. Fifty years of
the psychology of programming. Intern. J. Human-
Computer Studies 131 (Nov. 2019), 52–63; http://oro.
open.ac.uk/62027/.

5. Bostock, M., Ogievetsky, V., and Heer, J. D3 data-driven
documents. IEEE Trans. Visualization and Computer
Graphics 17, 12 (2011), 2301–2309.

6. Chasins, S. and Phothilimthana, P. Data-driven
synthesis of full probabilistic programs. In
Proceedings of the 2017 Computer-Aided Verification.
Springer International Publishing.

7. Chasins, S., Mueller, M., and Bodik, R. Rousillon:
Scraping distributed hierarchical web data. In
Proceedings of the 2018 Symp. User Interface
Software and Technology.

8. Coblenz, M., Aldrich, J., Myers, B., and Sunshine, J.
Interdisciplinary programming language design. In
Proceedings of the 2018 Intern. Symp. New Ideas,
New Paradigms, and Reflections on Programming and
Software (Onward!), 133–146.

9. Cooper, S., Dann, W., and Pausch, R. Alice: A 3-d tool
for introductory programming concepts. J. Comput.
Sci. Coll. 15, 5 (Apr. 2000), 107–116.

10. Erdweg, S. et al. The state of the art in language
workbenches. In Proceedings of the 2013 Intern.
Conf. Software Language Engineering.

11. Fisher, M., Rothermel, G., Brown, D., Cao, M., Cook, C.,
and Burnett, M. Integrating automated test generation
into the WYSIWYT spreadsheet testing methodology.
ACM Trans. Softw. Eng. Methodol. 15, 2 (Apr. 2006),
150–194; https://doi.org/10.1145/1131421.1131423.

12. Green, T. and Petre, M. Usability analysis of visual
programming environments: A ‘cognitive dimensions’
framework. J. Visual Languages & Computing 7, 2
(1996), 131–174.

13. Gulwani. S. Automating string processing in
spreadsheets using input-output examples. In
Proceedings of the Symp. Principles of Programming
Languages, 2011.

14. Hansen, M., Lumsdaine, A., and Goldstone, R.
Cognitive architectures: A way forward for the
psychology of programming. In Proceedings of the
ACM Intern. Symp. New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward!
2012, 27–38. ACM, New York, NY, USA; https://doi.
org/10.1145/2384592.2384596.

15. Head, A., Glassman, E., Soares, G., Suzuki, R.,
Figueredo, L., D’Antoni, L., and Hartmann, B. Writing
reusable code feedback at scale with mixed-initiative
program synthesis. In Proceedings of the 4th ACM
Conf. Learning @ Scale, 2017.

16. Hempel, B., Lubin, J., Lu, G., and Chugh, R. Deuce:
A lightweight user interface for structured editing.
In Proceedings of the 2018 Intern. Conf. Software
Engineering, 2018.

17. Kay, A. The early history of Smalltalk. History of
Programming Languages—II, 1996, 511–598.

18. Ko, A., et al. The state of the art in end-user software
engineering. ACM Comput. Surv. 43, 3 (Apr. 2011);
https://doi.org/10.1145/1922649.1922658.

This work is licensed under a http://
creativecommons.org/licenses/by/4.0/

