
D���V��: Dynamically Synthesized UI Widgets for Visualization
Editing

Priyan Vaithilingam
pvaithilingam@g.harvard.edu

Harvard University
Boston, USA

Jeevana Priya Inala
jinala@microsoft.com

Microsoft
Redmond, USA

Elena L. Glassman
glassman@seas.harvard.edu

Harvard University
Boston, USA

Chenglong Wang
chenwang@microsoft.com

Microsoft
Redmond, USA

Figure 1: Screenshot of D���V�� tool. (a) Imported data is shown on the left as a table. (b) Users can provide natural language
command to edit the chart using the command bar. (c) The visualization is displayed on the center. (d) The widgets panel shows
the automatically synthesized dynamic widgets based on user’ natural language commands, in reverse chronological order
(recently added widgets at the top).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642639

ABSTRACT
Users often rely on GUIs to edit and interact with visualizations — a
daunting task due to the large space of editing options. As a result,
users are either overwhelmed by a complex UI or constrained by
a custom UI with a tailored, �xed subset of options with limited
editing �exibility. Natural Language Interfaces (NLIs) are emerging
as a feasible alternative for users to specify edits. However, NLIs
forgo the advantages of traditional GUI: the ability to explore and
repeat edits and see instant visual feedback.

We introduce D���V��, which blends natural language and dy-
namically synthesized UI widgets. As the user describes an editing

https://doi.org/10.1145/3613904.3642639
mailto:permissions@acm.org
mailto:chenwang@microsoft.com
mailto:glassman@seas.harvard.edu
mailto:jinala@microsoft.com
mailto:pvaithilingam@g.harvard.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642639&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

task in natural language, D���V�� performs the edit and synthe-
sizes a persistent widget that the user can interact with to make
further modi�cations. Study participants (n=24) preferred D���V��
over the NLI-only interface citing ease of further edits and editing
con�dence due to immediate visual feedback.

CCS CONCEPTS
• Human-centered computing ! Graphical user interfaces;
Natural language interfaces.

KEYWORDS
User Experience Design, Visualization, Usability Study

ACM Reference Format:
Priyan Vaithilingam, Elena L. Glassman, Jeevana Priya Inala, and Chenglong
Wang. 2024. D���V��: Dynamically Synthesized UI Widgets for Visualiza-
tion Editing. In Proceedings of the CHI Conference on Human Factors in
Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3613904.3642639

1 INTRODUCTION
Modern interactive visualization authoring tools (e.g., Tableau [10],
PowerBI [6], Lyra [46], Charticulator [45]) have greatly reduced
the e�ort to create initial visualizations from data. With these tools,
authors only need to specify high-level mappings from data �elds
to visual properties, and behind the scenes, these tools automati-
cally provide “smart defaults” [47, 56] to �ll in hundreds of chart
parameters—hiding low-level details.

While these smart defaults are often su�cient for exploratory
analysis, authors who want to re�ne the visualization to better
communicate their insights and readers who want to customize the
visualization to answer their analysis objectives often �nd them-
selves in need of editing these default visualizations. For example,
to prevent longer labels from overlapping in a line chart, the user
has to rotate the labels in the G-axis. Or, the user will have to add a
�lter to only include data within a given date range (see Figure 2).

These edits are often considered “small tweaks” of the visual-
ization, but these long-tailed edits can be very challenging. First,
the user needs to distinguish which options will lead to the desired
editing e�ect (e.g., understand that they need the “tick” option as
opposed to “scale” or “legend” to edit label angle), which requires
expertise on low-level visualization grammar. Then, the user needs
to discover the edit option in the tool which may be buried in tiers
of menus and panels among all others in a tool GUI (e.g., the user
needs to right-click the G-axis to open its property editor, locate
the sub-panel on ticks, �nd the rotation option to change the label
angle), which can be challenging to achieve without decent tool
expertise. As a result, users are either presented with a complex
UI where they are swamped with options, or a tailored interface
designed to simplify navigation where they often �nd themselves
too restricted to perform the desired customization.

An emerging approach to address this visualization editing and
re�nement challenge is to design natural language interfaces (NLIs)
that allow users to describe editing e�ects in natural language.
Then, based on the user’s instructions, the tools automatically infer
necessary options and corresponding values to apply the edits. For
example, the user can give the natural language command to “move

the G-axis title to the left side of the axis”, which will translate to
changing the “titleAnchor” property of the “G” encoding to the value
“start”. However, while NLIs address the discovery and navigation
challenges, they forgo the bene�ts of GUI, especially the abilities to
perform �ne-grained edits, obtain immediate visual feedback from
editing results, and quickly undo and reapply edits. For example, if
the user wants to make the width of the strokes in the line chart
thicker, they do not always have the exact size in mind, and would
often try out di�erent sizes before choosing one. Or, if the user
wants to change the colors of the bar chart, they may not know the
exact hex (or RGB) value to provide. Such limitations restrict NLIs’
applications in visualization editing.

To address the visualization editing and re�nement challenge,
we design a new interaction approach, interaction via dynamically
synthesized GUI widgets, and develop a tool named D���V�� for
visualization editing. Our key design insight is to blend natural
language interfaces with interactive GUI widgets so that users can
bene�t from both NLIs’ reduction in the gulf of execution [11] and
GUI’s interactivity. To perform a visualization editing task, the user
starts by either describing what edits they want to perform (e.g.,
“rotate G-axis label 45 degrees”) or directly asking for a GUI widget
that they envision to perform the edits with (e.g., “give me a slider
to control G-axis label angles”); either way, D���V�� synthesizes a
GUI widget (along with a preset value from user’s speci�cation in
the former case) using a Large Language Model (LLM) for the user
to explore and perform subsequent edits.

Besides the immediate bene�ts of reduced navigation overhead
and interactivity for exploring edit e�ects, users can also easily
compose and coordinate multiple edits using dynamic widgets
as they persist after synthesis for quick editing access. Behind
the scenes, we designed a widget synthesis engine powered by
a large language model that translates user inputs into an HTML
implementation of the widget and a call-back function that connects
the widget inputs to visualization properties. D���V�� is highly
expressive and supports both chart design edits (e.g., adjusting
tick spacing, legend position, color scheme, label and title font
properties) for authors to re�ne visualizations, and data-related
edits (e.g., generating �lters, zooming controllers, and sort) for
readers to interactively explore visualizations without pre-built
interactive widgets. Our study with 24 participants shows that
participants prefer to use D���V�� over NLI-only interfaces due to
the ease of repeating edits, and increased con�dence when editing
using a GUI due to immediate visual feedback.

Our contributions are as follows:
• A new interactive approach for visualization editing, dy-
namic widgets, that combines NLI with GUI widgets to re-
duce the gulf of execution and enhance interactivity.

• A widget synthesis engine that leverages large language
models to translate natural language inputs into widgets and
control functions.

• A user study to evaluate how users use D���V�� to solve
visualization editing tasks.

https://doi.org/10.1145/3613904.3642639

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 2: D���V�� dynamically synthesizes widgets based on natural language commands for visualization editing. The user
can describe an edit to the visualization, and D���V�� modi�es the visualization and synthesizes a dynamic widget which the
user can use for further edits (shown as 0 ! 1). Alternatively, the user can directly ask for a dynamic widget to perform edits
(shown as 0 ! 2).

2 USAGE SCENARIO

Alice is a consultant analyzing stock trends of technology com-
panies using spreadsheets, and she needs to create visualizations to
present her analysis results to her collaborator. Below, we describe
Alice’s experience of using D���V�� to edit and enhance her charts.
Figure 1 shows the UI of D���V��, which contains four main com-
ponents: (a) the data panel, (b) the command bar for specifying
visualization and editing commands, (c) the visualization panel that
shows the current working chart, and (d) the panel of synthesized
dynamic widgets that users can use to manage widgets and edit the
working chart.

Initial chart. Alice starts by importing the data “stocks.csv”
into the tool, and the data shows up in the data panel (Figure 1-a).
To create a chart, she provides a natural language description of
the chart “create a line chart showing the stock trends” in Figure 1-
b. Upon submission, D���V�� invokes an LLM to generate a line
chart based on information from the dataset and the NL description
(Figure 3). Besides creating the chart using natural language, Alice
can also import the Vega-Lite visualization spec she created from
other tools.

Alice is not quite satis�ed with the initial visualization because
(1) the legend takes too much space on the right, (2) G -axis labels are
too small to read, and (3) the color scheme is not ideal, Alice decides
to use D���V�� to re�ne the chart. With D���V��, Alice has two
options to edit charts: (1) provide a natural language instruction
in the command bar (Figure 1-b) to describe the edit she wants to
achieve, and (2) explicitly add a widget by clicking the “+” button
at the top of the widgets panel (Figure 1-d) and providing a natural

language description of the desired widget. Either way, D���V��
dynamically generates widgets for Alice to perform edits.

Adjusting legend position via chart editing commands.
Alice �rst wants to adjust the legend position to keep the legend
contained within the main chart canvas. She decides to use chart
editing commands to describe changes she wants to apply. For this,
she provides the instruction “move the legend to the left of the chart”
through the natural language command bar. Based on the instruc-
tion, D���V�� updates the visualization spec to re-position the leg-
end. Additionally, D���V�� also automatically generates a widget
with a drop-down menu for various legend positions pre-populated.
As shown in Figure 3-(2), with this widget, Alice experiments with
multiple legend positions before �nalizing her �nal choice of “top-
left corner”, which is, in fact, a better option than “left” that Alice
didn’t expect in the beginning.

Coordinated editing of text size and rotation angle of G -
axis labels. Next, Alice wants to resolve issues with G -axis labels
which are currently too small to read. However, this can be a quite
challenging edit: increasing the font size would most likely make
labels overlap with each other; and while overlaps can be resolved
by rotating label angles, too much rotation would make them less
readable. Thus, Alice needs to coordinate the edits to label font
size and rotation angle to �nd the right balance. Alice doesn’t
have a clear idea on what’s the optimal combination yet, thus she
starts with an exploratory command “increase the G -axis text size
to 20 and rotate the labels by 60 degrees”. D���V�� updates the
chart based on the command and presents her with a “G -axis Label
Editor” widget that lets her edit the text size and angles of the
G -axis labels simultaneously (see Figure 4). With this, Alice can try

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

Figure 3: (1) Alice asks D���V�� to create a line chart to show the stock trend by providing a natural language prompt. (2) She
then asks D���V�� to edit the legend position by giving a natural language command.

Figure 4: (1) Alice asks D���V�� to increase the G -axis label text size to 20 and rotate it by 45 degrees counter-clockwise. (2)
D���V�� edits the chart and also adds a dynamically synthesized widget for Alice to make further changes in the future.

out many combinations with ease without having to re-issue the
editing instructions. After some trial-and-error, she settles on a font
size of 15 and rotation angle of �45 that suits her needs.

Choosing colors via widget creation commands. Now, Alice
wants to modify the default color palette of the chart. Since Alice
does not yet have concrete colors in mind, she decides to use the
widget creation feature of D���V�� to ask for a widget to explore
the color options. To do so, she clicks the “+” button at the top of the
widget panel (Figure 5) to open the widget creation command box,
she then types in the prompt “change the color of each stock symbol”.
D���V��, which understands the current context of the chart and
the current dataset, generates a tailored “Stock color picker” widget
that allows her to pick colors for each stock symbol in the chart
(see Figure 5). D���V�� even knows all the symbols that are part
of her current dataset, and can generate a tailored widget for her.
Alice can use this widget to try di�erent colors, get instant visual
feedback, and choose the desired colors for her chart.

Data exploration with data �lter widgets. After Alice �n-
ishes up the customization, she emails the visualization to her
collaborator Alex who plans to include the visualization in a news
article he is writing. After some analysis, Alex wants to compare
the stock trends for just MSFT and IBM to get deeper insights.

Instead of going back and asking Alice to do that, Alex imports
the visualization spec in D���V�� to perform the edits (a JSON
Vega-Lite spec that contains data as elaborated more in section 3).
After importing, Alex provides the command “compare only MSFT
and IBM”, and D���V�� quickly updates the chart to run a �lter
transformation to show only the data for MSFT and IBM. D���V��
also provides a “S����� F�����” widget with a checkbox for each
stock symbol, using which Alex can continue to compare di�erent
stock trends choosing one or more symbols to compare (Figure 1,
third widget). D���V�� also intelligently identi�es that this widget
has a data-�ltering transform and provides a switcher for users to
enable or disable the transformation.

Next, Alex asks for a Date slicer widget to zoom the visualization
by using a smaller time window (Figure 1, second widget). Since
the stock prices of the two companies that are compared are much
lower than other companies, Alex also requests a widget to slice
the ~-axis range. Now using the generated ~-axis range slicer, Alex
can zoom in and out of the range window to see minute price
changes within the time window of his choosing (Figure 1, �rst
widget). After �nding the desired visualization, Alex includes the
�nal visualization in his article for publication.

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: (1) This time Alice explicitly requests for a widget to change the color of each stock symbol by clicking the “+” button
and giving the natural language prompt. (2) D���V�� synthesizes a widget, without making any edits to the chart.

Remark: Alice and Alex can complete the visualization re�ne-
ment and exploration tasks with ease thanks to the following bene-
�ts of D���V��.

• In conventional GUI, Alice needs to navigate menus and
panels to locate widgets to perform edits, which requires
her pro�ciency in both GUI and visualization terminologies.
D���V�� lowers this barrier by allowing Alice to obtain
desired widgets via natural language descriptions.

• Synthesized widgets allow Alice to perform �ne-grained
edits and obtain immediate visual feedback from editing
results, which enables her to explore and coordinate editing
options. This allows her to �nd optimal edits through trial
and error for edits she previously didn’t know precisely (e.g.,
color, rotation angle, and text). Alice won’t be able to explore
edit options easily with an NLI as it requires her to describe
concrete parameter values and has a delayed speci�cation-
feedback cycle.

• D���V�� is highly expressive and supports both chart re-
�nement edits for the author Alice and data manipulation
edits for the reader Alex. Without D���V��, Alex would
either have to interact with Alice every time he wants an
updated version of the chart or ask Alice to create an interac-
tive visualization which requires additional e�orts to tailor
options.

• As dynamic widgets persist after creation and are fully com-
positional, Alice and Alex can go back and repeat edits (e.g.,
update G -axis range as analysis objective changes) or revert
certain edits (e.g., undo data �ltering). This can be challeng-
ing with an NLI as changes are non-compositional, and every
update requires a new editing command. Or, with a conven-
tional GUI, they would need to keep track of all edits they
have done in order to repeat or redo edits.

3 DYNAVIS SYSTEM DESIGN AND
IMPLEMENTATION

In this section, we �rst describe the design principles behind our
core concept of widgets. We then describe our synthesis frame-
work for dynamically synthesizing these widgets. D���V�� is a

cross-platform web application that is implemented with React and
Typescript for the front-end UI and Python for the back-end server.

3.1 Dynamic Widgets
Widgets as modular sub-components. With D���V��, we

introduce dynamic widgets, which are small modular UI components
that focus on a particular edit or interaction task at hand. The edit
can involve simple changes to one or multiple chart properties, such
as changing the position of the legend or slicing, or can involve a
data transformation operation executed on the data before chart
rendering, such as �ltering speci�c ranges on the axes. At a high
level, a widget has two components:

• An HTML script that describes the UI elements of the widget
which the user will interact with to manipulate the visual-
ization. e.g., An HTML script containing an <input> element
of type slider to change the x-axis label size of the chart (see
Figure 6).

• A JavaScript callback function that contains the code that
will be executed to manipulate the visualization and/or data
whenever the user interacts with the widget. This callback
function is of the form callback(event, chart) => (transforms,
chart), which accepts both the HTML event object and the
current chart as inputs and generates an optional list of
transforms and the updated chart as outputs. This callback
function is attached to the onChange event handlers of all
the input elements in the HTML script.

An example of the dynamic widget is shown in Figure 6 along with
its HTML script and Javascript callback function.

One of the main design choices of our system is to ensure the
modularity of the widgets so that edits from two di�erent wid-
gets do not con�ict or manipulate the chart in unexpected ways.
This requirement has implications for how we handle charts and
transforms:

Handling charts. To ensure that each widget only changes a
small component of the chart, we recognized that using a declara-
tive chart representation is preferable to an imperative one. One
such declarative representation is to use a JSON object (called a

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

Figure 6: A dynamic widget is comprised of two components — (1) The HTML script de�ning the UI (2) The JS callback function
that listens for the changes in the UI to edit the visualization.

speci�cation) to encode the properties of the chart. For example,
with JSON representation, to change the x-axis title, one can just
edit the chart speci�cation as spec.encoding.x.title = "axis title"
without having to change anything else regarding the chart.

In this paper, we use Vega-Lite speci�cations [47] for repre-
senting charts since it provides us with a concise and declarative
representation of visualization while also maintaining expressive-
ness. Vega-Lite also provides a well-supported rendering engine
that is compatible with all the major web frameworks.

Handling data transformations. Data transformations are
an important part of visualization editing. D���V�� handles all
the Vega-Lite data transformations, e.g., �lter, fold, �atten, etc. In
D���V��, transforms are represented as a list of objects similar to
Vega-Lite. Each widget’s callback outputs a list of transforms. The
transforms are performed in the order in which they are speci�ed in
this list. If there are multiple widgets with transforms, we execute
transforms in the chronological order of the widgets. To enable this,
we keep a mapping of the widgets to their most recent callback’s
output transforms, so that we can execute all widget’s latest trans-
forms before rendering the chart for every edit. For every widget
that adds transformations to the chart, D���V�� adds a switch so
that users can enable or disable the transform. e.g., Let’s take the
example of Alex from Section 2. When they request a widget to
slice the date range, the synthesized widget adds a �lter transform
on the data. D���V�� identi�es this as a special Transform Widget,
and allows Alex to dynamically enable or disable the transform to
see the original chart and the �ltered chart.

3.2 Synthesis Framework
Below we describe our synthesis framework by splitting it into three
stages: pre-processing, LLM-based synthesis, and post-processing.
Our framework comprises of 3 main modules: a Data Summarizer,
a Chart Engine, and a Widget Engine as shown in Figure 7.

3.2.1 Pre-processing: Data Summary and Visualization Pre-processing.

To generate visualizations and synthesize dynamic widgets, the
LLM needs an accurate context of the data the user is working with.
However, due to the limited context window supported by LLMs,
we cannot pass the whole data to the LLM. Hence, to augment
LLMs with grounding context about the data, we borrow the Data

Summarizer from Lida [22]. This summarizer is used to produce a
dense yet compact summary for any given dataset that is useful as
a grounding context for visualization tasks. For every LLM query
in the subsequent steps, we pass the data summary instead of the
data. First, the summarizer applies rules to extract dataset proper-
ties including atomic types (e.g., integer, string, boolean), general
statistics (min, max, unique values, etc.), and a random list of n
samples for each column using the pandas python library [8]. Then
the base summary is enriched by an LLM to include a semantic
description of the dataset (e.g., a dataset of stock prices for top 5
tech companies for 10 years), and �elds (e.g., Stock price in USD)
as well as �eld semantic type prediction [62] (see Figure 8).

Before sending any edit or widget synthesis queries to the LLM,
D���V�� splits the data from the visualization speci�cation, and
any other unnecessary chart properties (like canvas con�guration
properties) to prevent context over�ow. This also ensures that the
rendering engine can remain responsive to UI changes.

3.2.2 LLM-based Synthesis of Visualization and Dynamic Widgets.

Synthesizing visualization. The Chart Engine is primarily re-
sponsible for synthesizing visualizations — either new visualiza-
tions or editing existing visualizations based on the natural lan-
guage prompt from the user. The Chart Engine uses the enriched
data summary from the summarizer, the user prompt, and optionally
an existing Vega-Lite speci�cation to return a Vega-Lite speci�ca-
tion using a LLM [Fig 9]. To ensure that the LLM produces a valid
Vega-Lite speci�cation, and to prevent version-based errors, we
instruct the model to only use the Vega-Lite Schema v5 and to
produce a valid JSON output in a markdown code-block format
with language descriptors. Since chat-based models like GPT 3.5 are
trained to produce verbose output, using a Markdown code-block
format ensures we can reliably extract the code block. To maintain
consistency of output, we provide some few-shot learning examples
of Vega-Lite speci�cation with its description to the model.

Synthesizing dynamic widgets. The Widget Engine is primar-
ily responsible for synthesizing dynamic widgets. The widget en-
gine uses the data summary, current Vega-Lite chart speci�cation,
and the user prompt to return the widget components–both HTML
script and the Javascript callback function.

To ensure that the LLM produces a valid program for the widget
we provide strict templates for HTML and JavaScript. The HTML

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 7: D���V�� system architecture. The Data Summarizer generates a summary from input data to assist visualization
and widget synthesis. The Chart Engine applies changes to visualizations based on chart editing instructions, and the Widget
Engine is responsible for synthesizing dynamic widgets from both types of user commands.

Figure 8: The Summarizer constructs an NL summary from
extracted data properties.

Figure 9: Given the data summary, the NL prompt, and an
(optional) chart speci�cation, the chart engine produces an
updated chart speci�cation.

template de�nes the empty <div> stub with commented instruc-
tions. The JavaScript template has an empty JS function stub with a
prede�ned return value. This template improves the reliability and
predictability of the code generated. Templates also help us verify
the code in the next step of Program Analysis. We also provided a
few-shot examples of HTML and JS code to the model to maintain
consistency of output.

3.2.3 Post-Processing through Program Analysis.

Processing visualizations. Once we extract the JSON speci-
�cation from the markdown output, we parse the speci�cation to
check for JSON formatting errors and then compile the Vega-Lite
speci�cation to check for syntax or schema errors in the synthe-
sized speci�cation. In case of errors, we provide the error message
and ask the model to �x the errors in the same conversation context.
If this doesn’t work, we re-try the prompt once again.

Processing dynamic widgets. To prevent errors, and ensure
the validity of the widgets, D���V�� performs a series of post-
processing steps on the HTML and JS code synthesized by the
LLM using program analysis. We mention some of the many steps
involved in the post-processing stage below. Each step is achieved
by parsing the HTML and JS code to an abstract syntax tree (AST)
and manipulating the AST.

• Parse the HTML code, to ensure there are no con�icts in the
HTML “ID” property between the synthesized widgets and
previous widgets. If we �nd con�icts, we programmatically
modify the ID property and modify the corresponding JS
callback function.

• Parse the synthesized JS callback function to ensure it has
the right function name and valid function parameters.

• Identify and replace the HTML IDs used in the callback
function that were modi�ed in the HTML script.

• D���V�� ensures that the properties of the chart being edited
are either already present in the current chart or the callback
function handles the null case correctly.

3.3 User Interface Implementation
D���V�� is implemented as a web application with React and Type-
script. We use the html-react-parser [7] library to attach and detach
widgets on the �y as they are created and deleted. D���V��’s backed
hosts the data summarizer (implemented in pandas) implemented
as a �ask web server that communicates with the front-end using
REST API. We use the OpenAI API [1] to issue queries to the LLM.
We chose gpt-3.5-turbo as the target LLM in our current implemen-
tation from OpenAI because it strikes the right balance of accuracy

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

vs. speed. Since we had to make edits and synthesize widgets within
interactive time to prevent annoying the users, the GPT-3.5 model
was responsive enough and accurate enough to suit our needs. We
have also tested our tool with the more advanced GPT-4 model,
which supports longer context and has better instruction-following
capability to generate widgets more accurately. However, the la-
tency is too high for smooth interaction.

4 USER STUDY DESIGN
To understand how users can use D���V�� to solve visualization
editing tasks, we conducted a within-subjects lab study with 24
participants. In the study, users are asked to solve two sets of �ve
visualization editing tasks, one set using D���V�� and another
using a baseline NLI-based tool. We aim to answer the following
research questions:

RQ1 Does D���V�� reduce users’ e�orts to edit visualizations?
RQ2 In what scenarios do users prefer to use dynamic widgets

4.3 Tasks

compared to a baseline tool?
RQ3 What are users’ strategies to work with dynamic widgets?

4.1 Participants
We recruited 24 participants (13 female, 10 male, 1 chose not to dis-
close) through the mailing lists of two research universities. Of the
24 participants, 2 worked with data visualization at least once daily,
4 participants worked with visualizations weekly, 14 participants
worked with visualizations at least once a month, and 4 participants
less frequently but still occasionally worked with data visualization.
Participants mentioned they had prior experience with a variety
of visualization tools and libraries including matplotlib (Python),
Seaborn (Python), ggplot (R), Tableau, Excel, D3, and more. None of
the participants had any experience with Vega-Lite or Vega libraries.
Three of the 24 participants reported they performed data analysis
daily, 6 participants did it weekly, 8 participants did it at least a few
times a month, and 7 participants did it occasionally (less than a
few times a month). Participants received a $25 Amazon gift card
as compensation for their time.

4.2 Study Conditions
We consider the following two conditions in our user study. We
choose the NL-based visualization editing approach as the base-
line [23].

• Baseline Condition (UINL): We modi�ed the D���V��
interface with the support for Natural Language Commands
along with a set of pre-populated UI widgets for basic chart
manipulation (e.g., chart title, axis range, etc.) and remove
the support for dynamic widgets. By providing both NL
and basic UI supports for users to freely choose from, we
believe this is a fair state-of-the-art baseline tool for the
study. Pre-populated widgets are similar to static UI users
use to edit visualizations (like Excel, Google Sheets, etc.).
For the editing tasks, users can use a combination of natural
language commands and the pre-populated widgets to edit
the chart.

• Experiment Condition (UIDW): This is D���V�� with the
support for dynamic widgets on top of UINL. With this UI,

the users can edit the chart using natural language com-
mands, add custom dynamic widgets, or use the same set of
pre-populated widgets. As an addition, whenever the user
provides a natural language edit command to the AI, we will
synthesize and automatically add a dynamic widget. We dis-
play the synthesized widgets in reverse chronological order,
so the latest synthesized widget is shown at the top.

Note that we didn’t explicitly set up a widget-only baseline
based on an existing visualization tool as it would require us to
restrict participants to only people with experience with a certain
visualization tool, hence limiting the diversity of the participants.
However, we do collect user feedback in the interview on their
opinions on how their experiences with D���V�� di�er from their
favorite tools.

We selected three data visualization tasks derived from popular
datasets. Since our focus is on visualization editing tasks, not the
authoring task, the participant starts each task with a base dataset
and a base visualization. Informed by the formative study con-
ducted by Wang et al. [55], the participants will have to perform a
series of edits to the visualization. Each task contains �ve sub-tasks
containing instructions to perform edits to the base visualization.
We include the following three types of questions: (1) editing the
visualization with a concrete editing task, (2) exploratory editing
task (e.g., try a few options and then pick the best stroke width),
and (3) editing tasks with a question to be answered based on the
chart (e.g., zoom in to a time window or range, �lter data, etc.).

Task 1 (Stock Trends). Given a dataset of stock prices for the
top �ve tech companies over ten years and the baseline chart be-
low visualizing the stock trend, the user is asked to complete the
following sub-tasks.

(1) Change the chart title to “Stock Trend”.
(2) Try di�erent lines stroke widths and �nd the best one that suits you.
(3) Edit the chart to show the stock trends for AAPL and MSFT only.
(4) Change the y-axis max range to 250 to get a zoomed in view. Then,

answer the question: “By just viewing the chart, get the minimum
and maximum stock price for both AAPL and MSFT”.

(5) Now compare only between IBM and MSFT. Then, answer the ques-
tion: “By just viewing the chart, �nd the month and year, where
the di�erence in stock price between the two companies were maxi-
mum”.

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Task 2 (Unemployment Data). Given a dataset of USA unemploy-
ment statistics over multiple sectors and the stacked area chart
below visualizing the distribution of unemployment numbers, the
user is asked to complete the following sub-tasks.

(1) Change the x-axis title to “Timeline”.
(2) Try out di�erent legend positions (inside and outside the chart) to

choose the best position that suits you.
(3) Edit the chart to show the trends for Construction and Agriculture

sectors only.
(4) Edit the y-axis max date to 06/01/2004 (June 2004). Then, answer

the question: “By just viewing the chart, get the approximate month
and year where the di�erence in the unemployment rate between
the two sectors were maximum”.

(5) Now compare only between Finance and Construction. Then, answer
the question: “By just viewing the chart, get the approximate month
and year where the di�erence in the unemployment rate between
the two sectors were maximum”.

Task 3 (Weather Data). Given a dataset of Seattle weather for
ten years and the stacked bar chart below visualizing the aggre-
gated distribution of weather over each month, the user is asked to
complete the following sub-tasks:

(1) Change the y-axis title to “Number of Records”.
(2) Rotate the x-axis labels by 45, 65, and 90 degrees and choose the

best one for you.
(3) Change the color of each weather type to the following colors: Sun

to Yellow, Snow to Gray, Rain to Blue, Fog to Green, Drizzle to
Purple.

(4) Edit the chart to only show “Snow” weather for all the months. Then,
answer the question: “By just viewing the chart, �nd the month with
the lowest snow days”.

(5) Edit the chart to only show “Fog” weather for all the months. Then,
answer the question: “By just viewing the chart, �nd the months
with the highest fog days”.

4.4 Study Procedure
To enable easy access to D���V��, we hosted both the control
and the experiment versions of the tool online which could be
accessed by participants via their web browser. After obtaining
user consent, we recorded the audio and the screen-cast of each
participant, and the users were encouraged to think aloud during
the study. In each study session, the participant completed one of
the three tasks using the control condition and another task with
the experiment condition. To mitigate the learning e�ect, both the
order of task assignment and the order of tool assignment were
counterbalanced across participants through random assignment.
Therefore, for each unique combination of 3 tasks and 2 conditions,
we have 8 participant data points. Before each task in a study
session, the participant was given a tutorial of the assigned tool
and was allowed to explore using the tool for 5 minutes with a test
dataset. Before starting each task, we also explained the dataset
and the base visualization and provided time for the participants
to explore and understand the dataset. We set a time limit of 15
minutes for each task. After each task, the participant �lled out a
post-task survey to re�ect on their experience using the tool. After
�nishing both tasks, participants answered a �nal survey to directly
compare the two conditions. At the end of each study session, we
also conducted a brief informal interview at the end of the study
to get the participant’s subjective experience participating in the
study and feedback for the tool.

4.5 Measurements and Analysis
We recorded both quantitative and qualitative metrics during the
user study. We measured the success/failure for each editing sub-
task the participant had to perform. A sub-task is considered failed if
the participant is unable to �nish the task despite multiple attempts
with the tool. They are allowed to retry as many times as they prefer.
Through app telemetry, we also recorded all the natural language
commands the user provided to the tool and the interactions with
the widgets in the tool. In the post-task survey the user �lled after
every task, we recorded self-reported NASA Task Load Index, self-
reported Likert scores for ease of completing the task, and how well
the AI understood their intent (for survey questions look at Table 1).
In the post-study survey the user �lled at the end of both the tasks,
we recorded the participant’s self-reported preference and modi�ed
the NASA Task Load Index that focused directly on comparing
their experience between the two tools(for survey questions look at
Table 2). For qualitative analysis, the �rst author performed open-
coding on the participants’ responses, and the audio transcripts to
identify themes, and then discussed with co-authors to re�ne the
themes over multiple sessions. These themes are used to explain the
qualitative results. We use paired t-test to measure the statistical
signi�cance of quantitative metrics.

5 USER STUDY RESULTS
5.1 Task Completion
Participants using the UINL tool failed to complete sub-tasks more
often than the participants using the UIDW tool. When using the
UINL tool, seven participants (P4, P5, P6, P10, P11, P16, P17) failed

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

Q1.1. It was easy to complete the tasks using the tool provided. (1-Strongly Disagree, 7 - Strongly Agree)
Q1.2. The AI understood my intent and made the right edits. (1-Strongly Disagree, 7-Strongly Agree)
Q2.1. How mentally demanding was this task with this tool? (1—Very Low, 7—Very High)
Q2.2. How hurried or rushed were you during this task? (1—Very Low, 7—Very High)
Q2.3. How successful would you rate yourself in accomplishing this task? (1—Perfect, 7—Failure)
Q2.4. How hard did you have to work to accomplish your level of performance? (1—Very Low, 7—Very High)
Q2.5. How insecure, discouraged, irritated, stressed, and annoyed were you? (1—Very Low, 7—Very High)

Table 1: After each task, participants rated (on a 7-point Likert scale) their experience (questions 1.1 - 1.2) and the subjective
workload using NASA TLX measures (questions 2.1 - 2.5).

Q1.1. Which tool would you prefer to use? (1-UIDW, 7-UINL)
Q2.1. Which tool was more mentally demanding to communicate? (1-UIDW, 7-UINL)
Q2.2. Which tool made you feel hurried or rushed during the task? (1-UIDW, 7-UINL)
Q2.3. Which tool made you feel successful in accomplishing the task? (1-UIDW, 7-UINL)
Q2.4. For which tool did you work harder to accomplish your level of performance? (1-UIDW, 7-UINL)
Q2.5. Which tool made you feel more insecure, discouraged, irritated, stressed, and annoyed? (1-UIDW, 7-UINL)

Table 2: After �nishing both the tasks, participants comparatively rated (or a 7-point Likert scale) their tool preference (question
1.1) and the subjective workload using NASA TLX (questions 2.1 - 2.5) comparing between the two conditions. (note: in the
survey, the names of the UI were coded to prevent bias).

one of the sub-tasks compared to two participants (P1, P20) when us-
ing the UIDW tool. None of the participants failed on more than one
sub-task during the study. It is important to note, that these failures
are despite participants retrying the tasks as many times as they
want. Figure 10 shows the self-reported score (Likert scale; higher
is better) for ease of completing the task with the tool provided
for each condition. Participant using UIDW found it signi�cantly
(? = 0.004) easier to complete the task (` = 6.26, f = 0.86) compared
to using the UINL (` = 5.13, f = 1.6).

The average time ¯ C for participants in the UINL to complete
the task is 7 minutes and 22 seconds (C̄task_1 = 600500 , C̄task_2 =
902300 , and C̄task_3 = 603700). In the UIDW condition, participants
took an average time of 6 minutes and 36 seconds (C̄task_1 = 602000 ,
C̄task_2 = 700700 , and C̄task_3 = 602300) to complete the task. The
di�erence in task completion time between the two conditions is
not statistically signi�cant. Note that the exploratory nature of
some sub-tasks (e.g., task 1.3) encourages participants to spend
time exploring the visualization, and the completion time is not a
de�nitive measure of performance. We report the completion time
as a setup for understanding user e�orts which will be discussed in
the following sections.

We analyzed the session recordings to identify the root cause of
these task failures. Six of the seven failures in the UINL condition
and both the failures in the UIDW condition happened in Task 2.4,
where the participants had to slice the date range for the chart. This
was due to the model returning the dates in an incorrect format
when editing the Vega-Lite spec from an NL command. Vega-Lite
uses a speci�c JSON date format, e.g. {“date”: 14, “month”: 3,
“year”: 2004}, whereas the model in many instances used strings
to represent the date (e.g. “2004-03-14”), resulting in an error.
When generating the widget, the model seems to make this mistake
fewer times compared to editing the chart speci�cation directly.
The remaining failure in the UINL condition occurred during Task
1.5, where the participant had to change the �ltering values from
[MSFT, AAPL] to [MSFT, IBM]. In this instance, the model added an

Figure 10: Participants self-reported scores for NASA TLX
questions, ease of completing the task, and how well the AI
understood their intent.

extra con�icting �lter transformation instead of editing the existing
transformation.

5.2 Self-reported Cognitive Task Load Index
In the post-task self-reported NASA TLX ratings where participants
scored their cognitive load performing the tasks in both the condi-
tions (check Table 1 for questions), we did not �nd any statistically
signi�cant di�erence in the mental demand, how hurried or frus-
trated they felt, the e�ort required to complete the tasks and their
perception of success (see Figure 10).

In the post-task survey where the participants directly compared
their cognitive load between the two conditions (see Table 2 for
questions), when using the UIDW tool, 80% of participants felt
less mental demand, 83% of participants felt less hurried, 62% of
participants felt more successful, 75% of participants spent less

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 11: Participants self-reported cognitive load and pref-
erence scores that directly compare the two conditions.

e�ort, and 75% of the participants felt less frustrated compared to
when using UINL tool (see Figure 11).

5.3 User Behavior
5.3.1 Natural Language Commands vs. Dynamic Widgets usage.
Figure 12 shows the usage data for the number of natural language
commands invoked by the participants, and the number of interac-
tions with both dynamic widgets and pre-populated widgets.

In the UINL condition, participants used an average of 8.4 natural
language commands per task (including all sub-tasks) to edit the
visualization. This usage signi�cantly (? < 0.001) decreased to just
2.67 natural language commands when using the UIDW condition.
This was indeed replaced by the dynamic widget usage, where
participants on average used it 13.25 times when using the UIDW
condition. This con�rms our observation of an increase in the num-
ber of times participants �ne-tuned when using UIDW condition.
The widgets reduced the barrier to trying out many di�erent values
before settling on the edits. For instance, P6 said “With dynamic
widgets, I like how easy it is toggle or make edits in small increments
and try out many di�erent values. I can see what I’m clicking and
have �ne-grained controls”. There was no signi�cant di�erence in
the usage of pre-populated widgets between the two conditions.

5.3.2 User Strategy. In the UINL condition, we observed two ma-
jor strategies used by participants to perform the tasks. Six of 24
participants (P7, P9, P12, P13, P15, P17) always used natural lan-
guage commands to edit the visualization irrespective of any pre-
populated widgets available to perform the edit. Whereas, the other
18 participants �rst looked for a pre-populated widget to perform
their edits before resorting to natural language commands.

In the experiment condition UIDW, we observed two major strate-
gies used by participants. Nine participants (P2, P3, P4, P5, P6, P8,
P17, P18, P21) preferred to use only the widgets to make all the
edits. These participants used the AI only to synthesize dynamic
widgets without making the edits and then chose to make the edits

Figure 12: Usage metrics show the number of times the user
used pre-populated widgets, dynamic widgets, and natural
language commands.

by interacting with the synthesized widget instead. Ten partici-
pants (P7, P10, P12, P13, P16, P19, P20, P22, P23, P24) preferred to
use the natural language command to perform the broad edit, and
then use the automatically synthesized dynamic widgets to make
�ne-grained edits. P23 said “I would prefer to use the edit prompt
for the �rst time, and use the dynamic widgets for further edits and
adjustments”. P15 chose to use only natural language commands to
make the edits and said “I think that [UINL] was easier to use. It is
quite easy to make edits quickly using AI commands”. The remaining
participants used a combination of widgets and NL commands with
no particular preference.

5.3.3 Prompting Strategy. Participants when prompting the AI to
edit the chart generally provided their intent (goal) to the AI. For
all the sub-tasks, they structured their prompt as [ACTION VERB]
+ [CHART PROPERTY] + [VALUE]. Some examples are “Change
the stroke width to 5”, “Rotate the x-axis labels to 65 deg”, “change
the x-axis label to timeline”.

However, we did notice a variety of NL commands for �ltering-
based sub-tasks (Tasks 1.3, 1.5, 2.3, 2.5, 3.4, 3.5). Some participants
directly mentioned the values to keep. e.g., “show me �nance and
construction sectors only”. Some participants mentioned values to
remove. e.g., “Remove everything other than MSFT and AAPL” or
“Remove the plot for AAPL. Show me the variation of IBM”. Other
participants who weren’t pro�cient with charting libraries used
incorrect chart property names like “visibility of the strokes with
only MSFT and AAPL selected”, “remove all legend categories except
construction and agriculture”. In three such instances, the model still
performed the right �lter transformation. For two instances, the
model tried to modify the wrong property (like opacity) resulting
in an incorrect chart.

When prompting the AI for widgets, participants skip providing
the value in the prompt and directly manipulate it via the UI. Their
prompt was generally structured as [ACTION VERB] + [CHART
PROPERTY]. Some examples are, “change x-axis limit”, “change date

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

range”, “Change the x-axis max date”. For instance, P3 said “Just
an action along with the part of the chart that needed to be edited”.
P23 said “I keep it as short as possible. Similar to [edit] commands,
but without the data”. In the next sub-section, we show evidence
of how this makes prompting for a widget easier than using ML
commands to directly edit the chart. By taking advantage of data
context, domain constraints, and clever prompt engineering using
templates within D���V��, we can generate dynamic widgets with
very little ambiguity with just simple instructions from users [60].

5.4 User Preference
In the post-task survey, the users were asked to rate their prefer-
ence between the UINL and UIDW conditions. All the participants
except P15 (96%) strongly preferred using D���V�� compared to
the baseline tool. The informal interview and survey responses
shed light on the reasons, which we discuss in this sub-section.

Finding 1: Dynamic widgets make repetitive edits easier.
Sixteen participants (P1, P3, P4, P5, P6, P7, P9, P11, P13, P14, P17,
P18, P19, P21, P22, P23) explicitly mentioned that dynamic widgets
greatly reduced e�ort needed to perform repeated edits. By us-
ing dynamic widgets, they reduce the number of natural language
commands they need to type – which is very time-consuming. P5
said,“I will rather just interact with the dynamic widgets. Compared
to typing commands, I would just interact with an UI at the end of the
day”. P7 commented “Once the widget was there for a certain type of
task, I preferred using the widget as clicking is less cumbersome than
articulating and typing”. Moreover, when using dynamic widgets,
participants interacted with the LLM only once when creating the
widgets. Subsequent edits are performed instantly when compared
to using NL commands, where they have to wait for the response
from LLM every time they have to perform an edit. P6 said, “Dy-
namic widgets were the foundation for the edits I made and I can
do however many times I want. Faster than asking the AI again and
again”. This also explains the increased usage of dynamic widgets
mentioned in (Section 5.3.1). Users using UIDW, tried a lot more
values for exploratory sub-tasks since it was easier to repeat the
edits, compared to using UINL.

Finding 2: Visual feedback enhances understanding and
exploration. Nine participants (P2, P4, P5, P8, P11, P17, P18, P23,
P24) mentioned they prefer using dynamic widgets due to the in-
stant visual feedback the widgets provided when performing the
edits. This visual feedback works both ways. First, when the user
makes the edits using the dynamic widgets, the edits re�ect on the
chart immediately, since we aren’t waiting for a response from the
LLM. P23 summarizes this by saying “The real-time update with
widgets, rather than waiting for AI, was super cool. I can interactively
see what happens with the chart”. It is important to note that these
visualizations are inherently static with no interactivity – but by
creating and using dynamic widgets, participants are interacting
with an inherently static visualization.

Second, the UI provides visual feedback by retaining the edit
information in the state of the UI. P24 explains this by saying “with
dynamic widgets, I can also visualize the changes. For example, when
I change the color, I can just see the color directly in the widget. That is

very helpful, that is just e�cient”. Dynamic widgets provide clear vis-
ibility of chart (system) status, improving the visual feedback [42].
In other words, dynamic widgets help users overcome the usabil-
ity challenge of the gulf of evaluation (understanding the system
state) [11, 43].

Finding 3: Prompting to create dynamic widgets is easier
and more reliable. Figure 10 shows the participants’ self-reported
score (Likert scale; higher is better) for how well the AI under-
stood participants’ intent. Participants using UIDW tool (` = 6.04,
f = 1.36 Likert scale) reported that AI understood their intent
signi�cantly better (? = 0.024) than participants using UINL tool
(` = 4.95, f = 1.77 Likert scale). 18 of the 24 participants using
UINL had at least one failed natural language edit command, and 8
of the 24 participants had more than 2 failed natural language edit
commands. In contrast, only nine participants using UIDW had at
least one erroneous widget, and no participant had more than 2
erroneous widgets when performing the tasks.

Twelve participants (P1, P2, P3, P5, P6, P11, P14, P16, P17, P21,
P22, P24) explicitly noted that it was easier and more reliable to
prompt for dynamic widgets than to use just natural language to
edit the visualization. For instance, P3 commented, “with [UINL] I
had to provide my chat command as speci�c as possible to prevent
errors. But with dynamic widgets in [UIDW] I didn’t have to be very
speci�c”. P6 commented on the reliability by saying “I like the ability
to execute the edits using dynamic widget rather than leave it up to
chance using the AI”.

One probable reason for improved reliability could be: when us-
ing only natural language commands, the LLM will have to generate
the modi�ed Vega-Lite spec for the whole chart in the response.
This increases the probability of errors, since during the generation,
the LLM can potentially change any other unrelated property in
the speci�cation. Whereas, when generating dynamic widgets, the
model synthesizes a JavaScript callback function that only edits
one (or a few) properties of the Vega-Lite spec, greatly reducing
the probability of errors.

Finding 4: Dynamic widgets enhance the sense of control
over NL. Seven participants (P3, P5, P6, P8, P10, P16, P20) men-
tioned that using dynamic widgets provided them a greater sense
of control over the outcome when making edits to the visualization.
Users felt that the widgets provided a sense of structure to the edits
performed and a sense of autonomy. P8 said “The widgets gave me a
feeling of autonomy to make more changes compared to the AI. It had
created some kind of structure for achieving the change”. Further, P6
said “typing the text commands was a little non-ideal. Not having the
widgets made it feel like I don’t control the edits. [natural language]
commands made it feel like there was some level of uncertainty”.

Finding 5: Dynamic widgets enable customization, but can
be overwhelming for extended use. Nine participants (P1, P3,
P6, P9, P10, P11, P16, P14, P18) mentioned they liked using dynamic
widgets since it allowed them to customize their own UI to suit
their editing intents. P7 said “The dynamic widgets are pretty cool.
It’s like writing a whole tool for yourself, but instead of writing code,
it is instantly available”. Since we present the widgets in the reverse

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

chronological order of their creation, P18 said “I like dynamic wid-
gets, because it sort of stores the history of edits I made. I can refer it
back whenever I want to change it if I don’t like”.

Compared to traditional static UIs, dynamic interfaces are con-
stantly changing. Five participants (P21, P17, P18, P8, P23) pointed
out that creating dynamic widgets can get overwhelming over long
editing sessions with widget panels constantly being changed, and
wanted some way of either pausing widget creation or ability to
categorize and control the widgets that are shown. For instance,
P23 said “ If I made a lot of them [dynamic widgets], then it might
get tricky. It’ll be nice to have automatic grouping based on the kind
of edits the widgets do”. Similarly, P8 said “It would be nice to group,
collapse, or create multiple relevant and related widgets, just like
Photoshop, to customize better”. In contrast, P7 said “If it was a long
series of tasks, I would maybe just prefer a stable interface”, and P15
said — “with [UIDW] I’m not sure how dynamic widgets are helpful.
Using the commands was just simpler”.

5.5 Tool Performance
To understand the performance of the D���V�� using the GPT3.5
model, we performed a postmortem analysis to measure the latency
faced by the participants due to the model response time, and the
number of automatic retries required to generate the correct Vega-
Lite speci�cation and widget code. We measured this by re-playing
all the NL visualization edit commands, and the NL add widget
commands provided by the participants during the user study. On
average, each query to the GPT3.5 model added a latency of 1.47
seconds (f = 0.34 seconds). Also, on average for each NL edit / add
widget command, D���V�� had to automatically retry 1.16 times
(f = 0.58 times) to �x syntax or semantic errors before producing
the correct output.

6 DISCUSSION AND FUTURE WORK
Modalities beyond NL and UI widgets. D���V�� employs two

di�erent modalities for users to specify the kinds of edits they want
to make to the chart: natural language commands and interaction
through dynamic widgets. This design combines the strengths of
both modalities so the user can better communicate the intent to the
AI agent and quickly make repeated precise edits to the visualiza-
tion. This was re�ected in the study by the participants’ preference
for the tool, and how they interacted with both modalities.

An interesting future direction is to expand the modalities be-
yond the natural language and widget interaction by adding support
for voice commands as well as gestures and direct manipulation of
the chart. For example, instead of the user giving an NL command
“Move the legend to the bottom of the chart”, the user can simply click
and drag (though mouse, touch, or digital pens) the legend to the
bottom of the chart to make the edit. The user doesn’t need to know
they have to modify legend, rather they can simply point us toward
it. Similarly, D���V�� also has the potential to include by-example
speci�cations to let users demonstrate editing examples by editing
parts of the visualization and then letting the tool generalize edits
to other parts of the visualization.

However, multiple modalities also come with their challenges.
For example, it is not always easy for users to �gure out which
modality to use and when. Hence, more research is needed to help

users learn the bene�ts and disadvantages of each modality so that
they make an informed choice.

Static vs. Dynamic UI. One bene�t of using natural language
commands and dynamic widgets over traditional static UI is the
ability to ease the gulf of execution. With static UI, the user has to
know how and where to perform the edits, which can be cognitively
demanding [15]. Whereas, with NLIs and Dynamic widgets, the
users only need to specify their intent. The �ip side of this argument
is, that despite the learning curve, over time users will learn and get
used to the static UIs. However, with dynamic UIs, the interface is
constantly changing, which can potentially increase cognitive load
for the user, especially in long editing sessions and for users with
editing expertise. Some participants from the study did express this
concern and suggested having a way of categorizing the widgets
predictably. Longer term usability study would provide insights to
understand how constantly changing UI a�ects usability. Unlike
traditional interfaces, another limitation of D���V�� and other
purely NL-based interfaces is that they do not present all possible
options to the user at all times. This is a double-edged sword; Due
to the ad-hoc nature of NL interfaces, NL commands for adding
widgets/editing visualizations can sometimes help users discover
previously unknown features (similar to observations in [13]), and
other times can shift the onus of discovering the tool’s capabilities
onto the user leading to mistrust and distrust [44]. More research
is needed to study and �nd methods to overcome these limitations.

Another interesting future direction is to inspect how we can
take advantage of dynamic UI widgets’ low programming require-
ment to turn end users into “no-code developers” with the ability to
customize/DIY their interaction panels to augment static GUI. For
example, with dynamic widgets, an end user can construct their
own panel that best suits their daily tasks as shortcuts for complex
tasks. For example, a user who often works on geographical data
analysis can create a custom panel using dynamic widgets specially
for map manipulation functions to reduce map editing e�orts.

Supporting imperative plotting libraries and lower-level
visualization grammars. Dynamic widgets are designed around
declarative high-level visualization grammar to enable composi-
tional editing (e.g., VegaLite’s JSON representation for visualization
objects). The declarative syntax helps the widgets to be modular
and be synthesized and used in any order the user wishes. Despite
their advantages, high-level grammars expose fewer options than
low-level grammars or imperative libraries for more complex visu-
alization editing tasks (e.g., to make parts of a line dashed while the
rest solid, would require visiting lower-level details of how lines
are represented). To support editing of visualization in these low-
level languages, we envision combining D���V�� with bidirectional
editing approaches which leverage program analysis and synthesis
techniques to propagate surface-level edit requirements to edits
over program structures or parameters.

Dynamic widgets for accessibility and other applications.
Prior work on dynamically synthesized UIs stemmed from accessi-
bility research, like SUPPLE [25] and SUPPLE++ [26] to accommo-
date motor and vision capabilities. In the space of dynamic widgets
for visualization tasks, there are many possible UIs to perform the
same task (e.g., slider vs. number input to control the font size).

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

Every type of UI has accessibility trade-o�s based on the user’s
needs. In the future, we can imagine a version of D���V�� that lets
the user provide their interface constraints and preferences, and D��
��V�� automatically synthesizes UI that matches these constraints.
Prior work like [33, 53] has accomplished UI synthesis based on ex-
amples or demonstrations. A potential research direction would be
to add accessibility constraints and exploit the general knowledge
of LLMs to create accessible widgets.

While D���V�� is designed for visualization editing tasks, we
believe dynamic widgets can also bene�t general applications that
have extensive con�guration options (e.g., document processing
software, video processing applications). Users can also take ad-
vantage of dynamic widgets’ low programming requirements in
no-code / low-code tools (like Excel / Tableau) with the ability to
customize or DIY their interaction panels to augment existing static
UI. Investigating how dynamic widgets can be generalized across
di�erent application domains is worth studying in the future.

D���V�� design opportunities. There are a lot of opportuni-
ties to improve D���V�� in the future, some of which we highlight
here. In the UINL condition, some participants anticipated repeated
edits and copied the NL command, for reuse, before submitting it. In
the future versions of D���V��, we can enable users to access the
history of NL commands to make re-running NL commands with
small edits easier for the user. One of the most requested features
from the participants is for more ways to customize and manage a
large number of dynamic widgets. This can involve categorizing
widgets by topic (like Adobe Photoshop), and collapsing/expanding
(sections of) widgets. Another useful feature is to save and revisit
certain combinations of widgets. We can also go further by allowing
users to export the visualization spec along with the widgets to be
shared with other users, similar to Bespoke [53].

7 RELATED WORK
Visualization authoring tools. Modern visualization author-

ing tools [6, 10, 31, 45, 46] and grammars [5, 47] are built around
the grammar of graphics [56] and they greatly reduce the visual-
ization authoring e�orts by allowing users to specify high-level
visualization intent via mapping of data �elds to visual properties.
For example, users of Tableau or PowerBI can easily drag data �elds
and drop into encoding shelves of visual properties to specify the
mapping, and users of Vega-Lite can provide mappings concisely as
a JSON object. Then, based on high-level speci�cation, these tools
automatically provide “smart defaults” to �ll low-level visualiza-
tion properties (e.g., stroke with, spacing of bars) and compiles the
visualization spec to low-level visualization grammars like D3 [4]
for rendering. While such designs reduce the initial visualization
authoring complexity, visualization editing, and re�nement remain
challenging as the user needs to unbox high-level grammar and
navigate through the large space of editing options to perform
the edits. D���V�� is designed to address the visualization editing
challenge, which complements the strengths of existing authoring
systems. We envision that D���V�� can be combined with existing
tools in a way that users start with a high-level speci�cation to
describe the visualization intent and then utilize dynamic widgets
to perform subsequent edits to re�ne the chart.

Natural language interfaces for visualization (V-NLIs). Nat-
ural language interfaces have been extensively adopted to improve
the usability of visualization systems [49]. Even commercial GUI-
based tools like Tableau [36], Microsoft Power BI [12], and Google
Spreadsheets [21] automatically translate natural language queries
to data queries and present query results with visualizations. How-
ever, these systems limit natural language interactions to data
queries and corresponding standard charts.

The rapid development of Natural Language Processing (NLP)
techniques [14, 58] has provided great opportunities to explore a
natural language-based interaction for data visualization. There has
been active research in adopting Natural Language Interfaces to
improve the usability of visualization systems [21, 27, 48, 49, 52, 59].
With the help of advanced NLP-toolkits [2, 3, 9, 32, 35], a surge of
visualization-oriented Natural Language Interfaces (V-NLIs) have
emerged. V-NLI-based authoring systems accept the user’s nat-
ural language queries as input and output appropriate visualiza-
tions. Researchers have explored multiple techniques ranging from
heuristics-based approaches to end-to-end learning approaches.

Heuristic-based approaches explore properties of data in gener-
ating a space of potential visualizations [57], ranking these space
of visualizations based on quality attributes [34, 37] and presenting
them to the user. Further works have considered a task decom-
position approach, where the user queries are decomposed into
multiple tasks, which are then solved individually and then aggre-
gated to yield the �nal visualization [16, 38, 55]. Finally, end-to-end
learning-based approaches seek to learn mappings from data di-
rectly to visualizations [23]. More recently, with the advancements
in Large Language Models (LLMs), systems like Lida [22] have
found great success in leveraging patterns learned by LLMs from
massive language and code datasets to create visualizations from
natural language commands. LLMs preclude the requirement of ap-
plying heuristics, or training of custom models paired with custom
training and data. As an extension, many V-NLI authoring tools
also support visualization editing, with natural language as the
primary modality.

Customizable and dynamic user interfaces. Prior research
in domains such as accessibility and ubiquitous computing has
worked on systems that automatically generate UIs. SUPPLE [25]
and SUPPLE++ [26] generate custom UIs for users to accommo-
date their motor and vision capabilities based on user-provided
speci�cations and activity traces. Projects such as UNIFORM [40]
and the Personal Universal Controller (PUC) [39] generate cus-
tom UIs for appliances such as media consoles and printers that
are customized for each individual’s preferences and interaction
history. Huddle [41] built atop PUC generates UIs to coordinate
multiple home electronic appliances. Mavo [54] allows users to
create interactive HTML pages without the need for programming
by just adding special HTML attributes and also provides di�erent
editing widgets based on the type of attributes. D���V�� shares
these systems’ goals of creating specialized UI tailored to individual
users’ intent.

More recent work on Dynamic interfaces follows a “relaxation”
method to create generalized UI widgets. The relaxation method
involves creating UI widgets to directly manipulate variables in
a function or query. Bespoke [53] synthesizes custom GUIs for

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

command-line applications by using user demonstrations. They
employ rule-based heuristics that infer a semantic type for parame-
ters in bash commands to create a dynamic widget for editing the
parameter. Similarly, Heer et al. [28] generates dynamic UI using
query relaxing that enables the users to generalize their selection.
A suite of work named precision interfaces [17, 19, 63] uses SQL
queries as a proxy to generate interactive widgets from a sequence
of input queries. The latest iteration, NL2Interface [18] generates
SQL queries from NL commands and creates a generalized UI to
edit the parameters/variables in the SQL query. BOLT [51] and
EVIZA [48] generate ambiguity widgets that provide a simple UI
for manipulating values for ambiguous inferred variables. e.g., for
the NL command “largest earthquakes in California”, the threshold
for classifying earthquakes as large is ambiguous. However, in both
BOLT and EVIZA, natural language commands are restricted by
a pre-de�ned grammar. These tools highlight the importance of
complementary GUI tools that accompany NL interfaces. D���V��
builds on these systems, and uses an LLM to synthesize dynamic
widgets that can enable direct manipulation of Visualization prop-
erties. Using LLMs to generate dynamic widgets gives us three
distinct advantages:

(1) By providing an accurate representation of the user’s context
to the LLMs, D���V�� is less sensitive to errors or ambigui-
ties in natural language commands provided by the user.

(2) We do not have a �xed set of rules, or heuristics, or rely on
query relaxation. Instead of synthesizing a UI that allows
users to edit just one variable, LLMs can synthesize widgets
that can even capture complex relations like manipulating
multiple properties at once.

(3) Unlike previous systems, we do not restrict the space or the
kinds of UI that can be generated. As LLMs become more
powerful, this can enable the synthesis of complex interfaces
beyond just the traditional HTML Input elements.

Multi-modal user interfaces. Multi-modal interaction tech-
niques have the advantage of letting users better convey their intent
in multiple ways reducing the overall e�ort. Pumice [30] allows
users to use natural language to describe programming tasks in
end-user development scenarios and then re�ne intent by providing
examples to complement NL’s ambiguous nature. DIY Assistant [24]
lets users combine NL and programming speci�cations to create
personal assistants. Lee et al. [29] enables better sense-making with
visual query systems with the help of sketching. ShapeSearch [50]
lets users use query shapes using both NL and regular expressions
— greatly improving the expressiveness of shape search queries.
Tools like PanaromicData [61], and Vizdom [20] allow users to use
pen and touch to directly perform data aggregation and analytics
respectively on a digital whiteboard. D���V�� builds on the idea of
enabling multiple modalities of interaction. D���V�� leverages both
NL-based interaction to reduce the gulf of execution and UI-based
interaction to enhance interactivity. In the future, D���V�� can
further combine pen-and-touch for direct control of visual elements
on canvas as well as sketching to demonstrate editing e�ects.

8 CONCLUSION
In this paper, we introduce D���V��, which blends natural lan-
guage and dynamically synthesized UI widgets to ease the gulf

of execution and enhance interactivity. Given a visualization edit
command or a widget creation command, D���V�� synthesizes a UI
widget that the user can interact with to perform visualization edits.
Our study with 24 participants shows that participants preferred
D���V�� over the NLI-only interface citing ease of further edits
and editing con�dence due to immediate visual feedback.

ACKNOWLEDGMENTS
This material is based upon work supported by the NSF under
Grant No. CCF-2123965. This work was mostly performed during
an internship at Microsoft, and we thank the VIDA and the DL team
at Microsoft Research for their support and feedback.

REFERENCES
[1] 2020. OpenAI API. https://openai.com/blog/openai-api. Accessed: 2023-9-13.
[2] 2023. Apache OpenNLP. https://opennlp.apache.org/. Accessed: 2023-9-13.
[3] 2023. Cloud Natural Language. https://cloud.google.com/natural-language.

Accessed: 2023-9-13.
[4] 2023. D3 by Observable. https://d3js.org/. Accessed: 2023-9-14.
[5] 2023. ggplot2. https://ggplot2.tidyverse.org/. Accessed: 2023-9-14.
[6] 2023. Microsoft PowerBI. https://powerbi.microsoft.com/en-us/. Accessed:

2023-9-14.
[7] 2023. npm: html-react-parser. https://www.npmjs.com/package/html-react-

parser. Accessed: 2023-12-6.
[8] 2023. pandas documentation — pandas 2.1.0 documentation. https://pandas.

pydata.org/docs/index.html. Accessed: 2023-9-14.
[9] 2023. spaCy - Industrial-strength Natural Language Processing in Python. https:

//spacy.io/. Accessed: 2023-9-13.
[10] 2023. Tableau: Business Intelligence and Analytics Software. https://www.tableau.

com/. Accessed: 2023-9-14.
[11] 2023. The Two UX Gulfs: Evaluation and Execution. https://www.nngroup.com/

articles/two-ux-gulfs-evaluation-execution/. Accessed: 2023-9-14.
[12] 2023. Use natural language to explore data with Power BI Q&A - Power BI. https://

learn.microsoft.com/en-us/power-bi/natural-language/q-and-a-intro. Accessed:
2023-9-13.

[13] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 78 (apr 2023), 27 pages. https://doi.org/10.
1145/3586030

[14] Yonatan Belinkov and James Glass. 2019. Analysis methods in neural language
processing: A survey. Transactions of the Association for Computational Linguistics
7 (2019), 49–72.

[15] Raluca Budiu. 2014. Memory Recognition and Recall in User Interfaces. https:
//www.nngroup.com/articles/recognition-and-recall/. Accessed: 2023-9-12.

[16] Qiaochu Chen, Shankara Pailoor, Celeste Barnaby, Abby Criswell, Chenglong
Wang, Greg Durrett, and Işil Dillig. 2022. Type-directed synthesis of visualizations
from natural language queries. Proceedings of the ACM on Programming Languages
6, OOPSLA2 (2022), 532–559.

[17] Yiru Chen. 2020. Monte Carlo Tree Search for Generating Interactive Data
Analysis Interfaces. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). As-
sociation for Computing Machinery, New York, NY, USA, 2837–2839. https:
//doi.org/10.1145/3318464.3384404

[18] Yiru Chen, Ryan Li, Austin Mac, Tianbao Xie, Tao Yu, and Eugene Wu. 2022.
NL2INTERFACE: Interactive Visualization Interface Generation from Natural
Language Queries. ArXiv abs/2209.08834 (2022). https://api.semanticscholar.org/
CorpusID:252367337

[19] Yiru Chen and Eugene Wu. 2022. PI2: End-to-end Interactive Visualization
Interface Generation from Queries. In Proceedings of the 2022 International Con-
ference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 1711–1725. https:
//doi.org/10.1145/3514221.3526166

[20] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. 2015. Vizdom: interactive analytics through pen and touch. Proceedings
of the VLDB Endowment 8, 12 (2015), 2024–2027.

[21] Kedar Dhamdhere, Kevin S. McCurley, Ral� Nahmias, Mukund Sundararajan,
and Qiqi Yan. 2017. Analyza: Exploring Data with Conversation. In Proceedings of
the 22nd International Conference on Intelligent User Interfaces (Limassol, Cyprus)
(IUI ’17). Association for Computing Machinery, New York, NY, USA, 493–504.
https://doi.org/10.1145/3025171.3025227

[22] Victor Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-Agnostic
Visualizations and Infographics using Large Language Models. (6 March 2023).

https://openai.com/blog/openai-api
https://opennlp.apache.org/
https://cloud.google.com/natural-language
https://d3js.org/
https://ggplot2.tidyverse.org/
https://powerbi.microsoft.com/en-us/
https://www.npmjs.com/package/html-react-parser
https://www.npmjs.com/package/html-react-parser
https://pandas.pydata.org/docs/index.html
https://pandas.pydata.org/docs/index.html
https://spacy.io/
https://spacy.io/
https://www.tableau.com/
https://www.tableau.com/
https://www.nngroup.com/articles/two-ux-gulfs-evaluation-execution/
https://www.nngroup.com/articles/two-ux-gulfs-evaluation-execution/
https://learn.microsoft.com/en-us/power-bi/natural-language/q-and-a-intro
https://learn.microsoft.com/en-us/power-bi/natural-language/q-and-a-intro
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
https://www.nngroup.com/articles/recognition-and-recall/
https://www.nngroup.com/articles/recognition-and-recall/
https://doi.org/10.1145/3318464.3384404
https://doi.org/10.1145/3318464.3384404
https://api.semanticscholar.org/CorpusID:252367337
https://api.semanticscholar.org/CorpusID:252367337
https://doi.org/10.1145/3514221.3526166
https://doi.org/10.1145/3514221.3526166
https://doi.org/10.1145/3025171.3025227

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al.

arXiv:2303.02927 [cs.AI]
[23] Victor Dibia and Çağatay Demiralp. 2019. Data2vis: Automatic generation of

data visualizations using sequence-to-sequence recurrent neural networks. IEEE
computer graphics and applications 39, 5 (2019), 33–46.

[24] Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam.
2021. DIY assistant: a multi-modal end-user programmable virtual assistant.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (Virtual, Canada) (PLDI 2021). As-
sociation for Computing Machinery, New York, NY, USA, 312–327. https:
//doi.org/10.1145/3453483.3454046

[25] Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE: automatically generating
user interfaces. In Proceedings of the 9th International Conference on Intelligent
User Interfaces (Funchal, Madeira, Portugal) (IUI ’04). Association for Computing
Machinery, New York, NY, USA, 93–100. https://doi.org/10.1145/964442.964461

[26] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. 2007. Automatically
generating user interfaces adapted to users’ motor and vision capabilities. In Pro-
ceedings of the 20th Annual ACM Symposium on User Interface Software and Tech-
nology (Newport, Rhode Island, USA) (UIST ’07). Association for Computing Ma-
chinery, New York, NY, USA, 231–240. https://doi.org/10.1145/1294211.1294253

[27] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Kara-
halios. 2015. DataTone: Managing Ambiguity in Natural Language Interfaces
for Data Visualization. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). As-
sociation for Computing Machinery, New York, NY, USA, 489–500. https:
//doi.org/10.1145/2807442.2807478

[28] Je�rey Heer, Maneesh Agrawala, and Wesley Willett. 2008. Generalized selection
via interactive query relaxation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Florence, Italy) (CHI ’08). Association for
Computing Machinery, New York, NY, USA, 959–968. https://doi.org/10.1145/
1357054.1357203

[29] Doris Jung-Lin Lee, John Lee, Tarique Siddiqui, Jaewoo Kim, Karrie Karahalios,
and Aditya Parameswaran. 2019. You can’t always sketch what you want: Under-
standing sensemaking in visual query systems. IEEE transactions on visualization
and computer graphics 26, 1 (2019), 1267–1277.

[30] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[31] Zhicheng Liu, John Thompson, Alan Wilson, Mira Dontcheva, James Delorey, Sam
Grigg, Bernard Kerr, and John Stasko. 2018. Data Illustrator: Augmenting Vector
Design Tools with Lazy Data Binding for Expressive Visualization Authoring. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (,
Montreal QC, Canada,) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173697

[32] Edward Loper and Steven Bird. 2002. Nltk: The natural language toolkit. arXiv
preprint cs/0205028 (2002).

[33] Dylan Lukes, John Sarracino, Cora Coleman, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2021. Synthesis of web layouts from examples. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens, Greece)
(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
651–663. https://doi.org/10.1145/3468264.3468533

[34] Yuyu Luo, Xuedi Qin, Nan Tang, Guoliang Li, and Xinran Wang. 2018. DeepEye:
Creating Good Data Visualizations by Keyword Search. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 1733–1736.
https://doi.org/10.1145/3183713.3193545

[35] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,
and David McClosky. 2014. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, Kalina Bontcheva and Jingbo Zhu (Eds.).
Association for Computational Linguistics, Baltimore, Maryland, 55–60. https:
//doi.org/10.3115/v1/P14-5010

[36] Ruhaab Markas. 2018. Ask Data: Simplifying analytics with natural lan-
guage. https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-
language-98655. Accessed: 2023-9-13.

[37] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Je�rey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in draco. IEEE transactions on
visualization and computer graphics 25, 1 (2018), 438–448.

[38] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2020. NL4DV: A toolkit for
generating analytic speci�cations for data visualization from natural language
queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2020),
369–379.

[39] Je�rey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes, Thomas K.
Harris, Roni Rosenfeld, and Kevin Litwack. 2003. Personal universal controllers:

controlling complex appliances with GUIs and speech. In CHI ’03 Extended Ab-
stracts on Human Factors in Computing Systems (Ft. Lauderdale, Florida, USA)
(CHI EA ’03). Association for Computing Machinery, New York, NY, USA, 624–625.
https://doi.org/10.1145/765891.765896

[40] Je�rey Nichols, Brad A. Myers, and Brandon Rothrock. 2006. UNIFORM: auto-
matically generating consistent remote control user interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Montréal,
Québec, Canada) (CHI ’06). Association for Computing Machinery, New York,
NY, USA, 611–620. https://doi.org/10.1145/1124772.1124865

[41] Je�rey Nichols, Brandon Rothrock, Duen Horng Chau, and Brad A. Myers. 2006.
Huddle: automatically generating interfaces for systems of multiple connected
appliances. In Proceedings of the 19th Annual ACM Symposium on User Interface
Software and Technology (Montreux, Switzerland) (UIST ’06). Association for
Computing Machinery, New York, NY, USA, 279–288. https://doi.org/10.1145/
1166253.1166298

[42] Jakob Nielsen. 2020. 10 Usability Heuristics for User Interface Design. https:
//www.nngroup.com/articles/ten-usability-heuristics/. Accessed: 2023-9-13.

[43] Donald Norman. 1986. User centered system design. New perspectives on human-
computer interaction (1986).

[44] Raja Parasuraman and Victor Riley. 1997. Humans and automation: Use, misuse,
disuse, abuse. Human factors 39, 2 (1997), 230–253.

[45] Donghao Ren, Bongshin Lee, and Matthew Brehmer. 2018. Charticulator: Inter-
active construction of bespoke chart layouts. IEEE transactions on visualization
and computer graphics 25, 1 (2018), 789–799.

[46] Arvind Satyanarayan and Je�rey Heer. 2014. Lyra: An Interac-
tive Visualization Design Environment. Computer Graphics Fo-
rum 33, 3 (2014), 351–360. https://doi.org/10.1111/cgf.12391
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12391

[47] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Je�rey Heer.
2016. Vega-lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics 23, 1 (2016), 341–350.

[48] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis. In Pro-
ceedings of the 29th Annual Symposium on User Interface Software and Technology
(Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY,
USA, 365–377. https://doi.org/10.1145/2984511.2984588

[49] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2022. Towards natural language interfaces
for data visualization: A survey. IEEE transactions on visualization and computer
graphics (2022).

[50] Tarique Siddiqui, Paul Luh, Zesheng Wang, Karrie Karahalios, and Aditya
Parameswaran. 2020. ShapeSearch: A Flexible and E�cient System for Shape-
based Exploration of Trendlines. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIG-
MOD ’20). Association for Computing Machinery, New York, NY, USA, 51–65.
https://doi.org/10.1145/3318464.3389722

[51] Arjun Srinivasan and Vidya Setlur. 2023. BOLT: A Natural Language Interface
for Dashboard Authoring. (2023).

[52] Arjun Srinivasan and John T. Stasko. 2017. Natural Language Interfaces for
Data Analysis with Visualization: Considering What Has and Could Be Asked.
In EuroVis 2017 - Short Papers, Barbora Kozlikova, Tobias Schreck, and Thomas
Wischgoll (Eds.). The Eurographics Association, 55–59. https://doi.org/10.2312/
eurovisshort.20171133

[53] Priyan Vaithilingam and Philip J. Guo. 2019. Bespoke: Interactively Synthesizing
Custom GUIs from Command-Line Applications By Demonstration. In Proceed-
ings of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 563–576. https://doi.org/10.1145/3332165.3347944

[54] Lea Verou, Amy X. Zhang, and David R. Karger. 2016. Mavo: Creating Interactive
Data-Driven Web Applications by Authoring HTML. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 483–496.
https://doi.org/10.1145/2984511.2984551

[55] Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiaqi Wang, He Huang,
Haidong Zhang, and Dongmei Zhang. 2022. Towards natural language-based
visualization authoring. IEEE Transactions on Visualization and Computer Graphics
29, 1 (2022), 1222–1232.

[56] Leland Wilkinson. 2005. The Grammar of Graphics, Second Edition. Springer.
[57] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,

Anushka Anand, Jock Mackinlay, Bill Howe, and Je�rey Heer. 2017. Voyager
2: Augmenting Visual Analysis with Partial View Speci�cations. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 2648–2659. https://doi.org/10.1145/3025453.3025768

[58] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
Recent trends in deep learning based natural language processing. ieee Computa-
tional intelligenCe magazine 13, 3 (2018), 55–75.

https://arxiv.org/abs/2303.02927
https://doi.org/10.1145/3453483.3454046
https://doi.org/10.1145/3453483.3454046
https://doi.org/10.1145/964442.964461
https://doi.org/10.1145/1294211.1294253
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/1357054.1357203
https://doi.org/10.1145/1357054.1357203
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3468264.3468533
https://doi.org/10.1145/3183713.3193545
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655
https://www.tableau.com/blog/ask-data-simplifying-analytics-natural-language-98655
https://doi.org/10.1145/765891.765896
https://doi.org/10.1145/1124772.1124865
https://doi.org/10.1145/1166253.1166298
https://doi.org/10.1145/1166253.1166298
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://doi.org/10.1111/cgf.12391
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12391
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/3318464.3389722
https://doi.org/10.2312/eurovisshort.20171133
https://doi.org/10.2312/eurovisshort.20171133
https://doi.org/10.1145/3332165.3347944
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/3025453.3025768

D���V��: Dynamically Synthesized UI Widgets for Visualization Editing CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[59] Bowen Yu and Cláudio T Silva. 2019. FlowSense: A natural language inter-
face for visual data exploration within a data�ow system. IEEE transactions on
visualization and computer graphics 26, 1 (2019), 1–11.

[60] JD Zam�rescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[61] Emanuel Zgraggen, Robert Zeleznik, and Steven M Drucker. 2014. Panoramicdata:
Data analysis through pen & touch. IEEE transactions on visualization and

computer graphics 20, 12 (2014), 2112–2121.
[62] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çağatay Demiralp,

and Wang-Chiew Tan. 2019. Sato: Contextual semantic type detection in tables.
arXiv preprint arXiv:1911.06311 (2019).

[63] Haoci Zhang, Viraj Raj, Thibault Sellam, and Eugene Wu. 2018. Precision inter-
faces for di�erent modalities. In Proceedings of the 2018 International Conference
on Management of Data. 1777–1780.

	Abstract
	1 Introduction
	2 Usage Scenario
	3 DynaVis System Design and Implementation
	3.1 Dynamic Widgets
	3.2 Synthesis Framework
	3.3 User Interface Implementation

	4 User Study Design
	4.1 Participants
	4.2 Study Conditions
	4.3 Tasks
	4.4 Study Procedure
	4.5 Measurements and Analysis

	5 User Study Results
	5.1 Task Completion
	5.2 Self-reported Cognitive Task Load Index
	5.3 User Behavior
	5.4 User Preference
	5.5 Tool Performance

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

