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Figure 1: Screenshot of D���V�� tool. (a) Imported data is shown on the left as a table. (b) Users can provide natural language 
command to edit the chart using the command bar. (c) The visualization is displayed on the center. (d) The widgets panel shows 
the automatically synthesized dynamic widgets based on user’ natural language commands, in reverse chronological order 
(recently added widgets at the top). 
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ABSTRACT 
Users often rely on GUIs to edit and interact with visualizations — a 
daunting task due to the large space of editing options. As a result, 
users are either overwhelmed by a complex UI or constrained by 
a custom UI with a tailored, �xed subset of options with limited 
editing �exibility. Natural Language Interfaces (NLIs) are emerging 
as a feasible alternative for users to specify edits. However, NLIs 
forgo the advantages of traditional GUI: the ability to explore and 
repeat edits and see instant visual feedback. 

We introduce D���V��, which blends natural language and dy-
namically synthesized UI widgets. As the user describes an editing 
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task in natural language, D���V�� performs the edit and synthe-
sizes a persistent widget that the user can interact with to make 
further modi�cations. Study participants (n=24) preferred D���V�� 
over the NLI-only interface citing ease of further edits and editing 
con�dence due to immediate visual feedback. 

CCS CONCEPTS 
• Human-centered computing ! Graphical user interfaces; 
Natural language interfaces. 
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1 INTRODUCTION 
Modern interactive visualization authoring tools (e.g., Tableau [10], 
PowerBI [6], Lyra [46], Charticulator [45]) have greatly reduced 
the e�ort to create initial visualizations from data. With these tools, 
authors only need to specify high-level mappings from data �elds 
to visual properties, and behind the scenes, these tools automati-
cally provide “smart defaults” [47, 56] to �ll in hundreds of chart 
parameters—hiding low-level details. 

While these smart defaults are often su�cient for exploratory 
analysis, authors who want to re�ne the visualization to better 
communicate their insights and readers who want to customize the 
visualization to answer their analysis objectives often �nd them-
selves in need of editing these default visualizations. For example, 
to prevent longer labels from overlapping in a line chart, the user 
has to rotate the labels in the G-axis. Or, the user will have to add a 
�lter to only include data within a given date range (see Figure 2). 

These edits are often considered “small tweaks” of the visual-
ization, but these long-tailed edits can be very challenging. First, 
the user needs to distinguish which options will lead to the desired 
editing e�ect (e.g., understand that they need the “tick” option as 
opposed to “scale” or “legend” to edit label angle), which requires 
expertise on low-level visualization grammar. Then, the user needs 
to discover the edit option in the tool which may be buried in tiers 
of menus and panels among all others in a tool GUI (e.g., the user 
needs to right-click the G-axis to open its property editor, locate 
the sub-panel on ticks, �nd the rotation option to change the label 
angle), which can be challenging to achieve without decent tool 
expertise. As a result, users are either presented with a complex 
UI where they are swamped with options, or a tailored interface 
designed to simplify navigation where they often �nd themselves 
too restricted to perform the desired customization. 

An emerging approach to address this visualization editing and 
re�nement challenge is to design natural language interfaces (NLIs) 
that allow users to describe editing e�ects in natural language. 
Then, based on the user’s instructions, the tools automatically infer 
necessary options and corresponding values to apply the edits. For 
example, the user can give the natural language command to “move 

the G-axis title to the left side of the axis”, which will translate to 
changing the “titleAnchor” property of the “G” encoding to the value 
“start”. However, while NLIs address the discovery and navigation 
challenges, they forgo the bene�ts of GUI, especially the abilities to 
perform �ne-grained edits, obtain immediate visual feedback from 
editing results, and quickly undo and reapply edits. For example, if 
the user wants to make the width of the strokes in the line chart 
thicker, they do not always have the exact size in mind, and would 
often try out di�erent sizes before choosing one. Or, if the user 
wants to change the colors of the bar chart, they may not know the 
exact hex (or RGB) value to provide. Such limitations restrict NLIs’ 
applications in visualization editing. 

To address the visualization editing and re�nement challenge, 
we design a new interaction approach, interaction via dynamically 
synthesized GUI widgets, and develop a tool named D���V�� for 
visualization editing. Our key design insight is to blend natural 
language interfaces with interactive GUI widgets so that users can 
bene�t from both NLIs’ reduction in the gulf of execution [11] and 
GUI’s interactivity. To perform a visualization editing task, the user 
starts by either describing what edits they want to perform (e.g., 
“rotate G-axis label 45 degrees”) or directly asking for a GUI widget 
that they envision to perform the edits with (e.g., “give me a slider 
to control G-axis label angles”); either way, D���V�� synthesizes a 
GUI widget (along with a preset value from user’s speci�cation in 
the former case) using a Large Language Model (LLM) for the user 
to explore and perform subsequent edits. 

Besides the immediate bene�ts of reduced navigation overhead 
and interactivity for exploring edit e�ects, users can also easily 
compose and coordinate multiple edits using dynamic widgets 
as they persist after synthesis for quick editing access. Behind 
the scenes, we designed a widget synthesis engine powered by 
a large language model that translates user inputs into an HTML 
implementation of the widget and a call-back function that connects 
the widget inputs to visualization properties. D���V�� is highly 
expressive and supports both chart design edits (e.g., adjusting 
tick spacing, legend position, color scheme, label and title font 
properties) for authors to re�ne visualizations, and data-related 
edits (e.g., generating �lters, zooming controllers, and sort) for 
readers to interactively explore visualizations without pre-built 
interactive widgets. Our study with 24 participants shows that 
participants prefer to use D���V�� over NLI-only interfaces due to 
the ease of repeating edits, and increased con�dence when editing 
using a GUI due to immediate visual feedback. 

Our contributions are as follows: 
• A new interactive approach for visualization editing, dy-
namic widgets, that combines NLI with GUI widgets to re-
duce the gulf of execution and enhance interactivity. 

• A widget synthesis engine that leverages large language 
models to translate natural language inputs into widgets and 
control functions. 

• A user study to evaluate how users use D���V�� to solve 
visualization editing tasks. 
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Figure 2: D���V�� dynamically synthesizes widgets based on natural language commands for visualization editing. The user 
can describe an edit to the visualization, and D���V�� modi�es the visualization and synthesizes a dynamic widget which the 
user can use for further edits (shown as 0 ! 1). Alternatively, the user can directly ask for a dynamic widget to perform edits 
(shown as 0 ! 2 ). 

2 USAGE SCENARIO 

Alice is a consultant analyzing stock trends of technology com-
panies using spreadsheets, and she needs to create visualizations to 
present her analysis results to her collaborator. Below, we describe 
Alice’s experience of using D���V�� to edit and enhance her charts. 
Figure 1 shows the UI of D���V��, which contains four main com-
ponents: (a) the data panel, (b) the command bar for specifying 
visualization and editing commands, (c) the visualization panel that 
shows the current working chart, and (d) the panel of synthesized 
dynamic widgets that users can use to manage widgets and edit the 
working chart. 

Initial chart. Alice starts by importing the data “stocks.csv” 
into the tool, and the data shows up in the data panel (Figure 1-a). 
To create a chart, she provides a natural language description of 
the chart “create a line chart showing the stock trends” in Figure 1-
b. Upon submission, D���V�� invokes an LLM to generate a line 
chart based on information from the dataset and the NL description 
(Figure 3). Besides creating the chart using natural language, Alice 
can also import the Vega-Lite visualization spec she created from 
other tools. 

Alice is not quite satis�ed with the initial visualization because 
(1) the legend takes too much space on the right, (2) G -axis labels are 
too small to read, and (3) the color scheme is not ideal, Alice decides 
to use D���V�� to re�ne the chart. With D���V��, Alice has two 
options to edit charts: (1) provide a natural language instruction 
in the command bar (Figure 1-b) to describe the edit she wants to 
achieve, and (2) explicitly add a widget by clicking the “+” button 
at the top of the widgets panel (Figure 1-d) and providing a natural 

language description of the desired widget. Either way, D���V�� 
dynamically generates widgets for Alice to perform edits. 

Adjusting legend position via chart editing commands. 
Alice �rst wants to adjust the legend position to keep the legend 
contained within the main chart canvas. She decides to use chart 
editing commands to describe changes she wants to apply. For this, 
she provides the instruction “move the legend to the left of the chart” 
through the natural language command bar. Based on the instruc-
tion, D���V�� updates the visualization spec to re-position the leg-
end. Additionally, D���V�� also automatically generates a widget 
with a drop-down menu for various legend positions pre-populated. 
As shown in Figure 3-(2), with this widget, Alice experiments with 
multiple legend positions before �nalizing her �nal choice of “top-
left corner”, which is, in fact, a better option than “left” that Alice 
didn’t expect in the beginning. 

Coordinated editing of text size and rotation angle of G -
axis labels. Next, Alice wants to resolve issues with G -axis labels 
which are currently too small to read. However, this can be a quite 
challenging edit: increasing the font size would most likely make 
labels overlap with each other; and while overlaps can be resolved 
by rotating label angles, too much rotation would make them less 
readable. Thus, Alice needs to coordinate the edits to label font 
size and rotation angle to �nd the right balance. Alice doesn’t 
have a clear idea on what’s the optimal combination yet, thus she 
starts with an exploratory command “increase the G -axis text size 
to 20 and rotate the labels by 60 degrees”. D���V�� updates the 
chart based on the command and presents her with a “G -axis Label 
Editor” widget that lets her edit the text size and angles of the 
G -axis labels simultaneously (see Figure 4). With this, Alice can try 
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Figure 3: (1) Alice asks D���V�� to create a line chart to show the stock trend by providing a natural language prompt. (2) She 
then asks D���V�� to edit the legend position by giving a natural language command. 

Figure 4: (1) Alice asks D���V�� to increase the G -axis label text size to 20 and rotate it by 45 degrees counter-clockwise. (2) 
D���V�� edits the chart and also adds a dynamically synthesized widget for Alice to make further changes in the future. 

out many combinations with ease without having to re-issue the 
editing instructions. After some trial-and-error, she settles on a font 
size of 15 and rotation angle of �45 that suits her needs. 

Choosing colors via widget creation commands. Now, Alice 
wants to modify the default color palette of the chart. Since Alice 
does not yet have concrete colors in mind, she decides to use the 
widget creation feature of D���V�� to ask for a widget to explore 
the color options. To do so, she clicks the “+” button at the top of the 
widget panel (Figure 5) to open the widget creation command box, 
she then types in the prompt “change the color of each stock symbol”. 
D���V��, which understands the current context of the chart and 
the current dataset, generates a tailored “Stock color picker” widget 
that allows her to pick colors for each stock symbol in the chart 
(see Figure 5). D���V�� even knows all the symbols that are part 
of her current dataset, and can generate a tailored widget for her. 
Alice can use this widget to try di�erent colors, get instant visual 
feedback, and choose the desired colors for her chart. 

Data exploration with data �lter widgets. After Alice �n-
ishes up the customization, she emails the visualization to her 
collaborator Alex who plans to include the visualization in a news 
article he is writing. After some analysis, Alex wants to compare 
the stock trends for just MSFT and IBM to get deeper insights. 

Instead of going back and asking Alice to do that, Alex imports 
the visualization spec in D���V�� to perform the edits (a JSON 
Vega-Lite spec that contains data as elaborated more in section 3). 
After importing, Alex provides the command “compare only MSFT 
and IBM”, and D���V�� quickly updates the chart to run a �lter 
transformation to show only the data for MSFT and IBM. D���V�� 
also provides a “S����� F�����” widget with a checkbox for each 
stock symbol, using which Alex can continue to compare di�erent 
stock trends choosing one or more symbols to compare (Figure 1, 
third widget). D���V�� also intelligently identi�es that this widget 
has a data-�ltering transform and provides a switcher for users to 
enable or disable the transformation. 

Next, Alex asks for a Date slicer widget to zoom the visualization 
by using a smaller time window (Figure 1, second widget). Since 
the stock prices of the two companies that are compared are much 
lower than other companies, Alex also requests a widget to slice 
the ~-axis range. Now using the generated ~-axis range slicer, Alex 
can zoom in and out of the range window to see minute price 
changes within the time window of his choosing ( Figure 1, �rst 
widget). After �nding the desired visualization, Alex includes the 
�nal visualization in his article for publication. 
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Figure 5: (1) This time Alice explicitly requests for a widget to change the color of each stock symbol by clicking the “+” button 
and giving the natural language prompt. (2) D���V�� synthesizes a widget, without making any edits to the chart. 

Remark: Alice and Alex can complete the visualization re�ne-
ment and exploration tasks with ease thanks to the following bene-
�ts of D���V��. 

• In conventional GUI, Alice needs to navigate menus and 
panels to locate widgets to perform edits, which requires 
her pro�ciency in both GUI and visualization terminologies. 
D���V�� lowers this barrier by allowing Alice to obtain 
desired widgets via natural language descriptions. 

• Synthesized widgets allow Alice to perform �ne-grained 
edits and obtain immediate visual feedback from editing 
results, which enables her to explore and coordinate editing 
options. This allows her to �nd optimal edits through trial 
and error for edits she previously didn’t know precisely (e.g., 
color, rotation angle, and text). Alice won’t be able to explore 
edit options easily with an NLI as it requires her to describe 
concrete parameter values and has a delayed speci�cation-
feedback cycle. 

• D���V�� is highly expressive and supports both chart re-
�nement edits for the author Alice and data manipulation 
edits for the reader Alex. Without D���V��, Alex would 
either have to interact with Alice every time he wants an 
updated version of the chart or ask Alice to create an interac-
tive visualization which requires additional e�orts to tailor 
options. 

• As dynamic widgets persist after creation and are fully com-
positional, Alice and Alex can go back and repeat edits (e.g., 
update G -axis range as analysis objective changes) or revert 
certain edits (e.g., undo data �ltering). This can be challeng-
ing with an NLI as changes are non-compositional, and every 
update requires a new editing command. Or, with a conven-
tional GUI, they would need to keep track of all edits they 
have done in order to repeat or redo edits. 

3 DYNAVIS SYSTEM DESIGN AND 
IMPLEMENTATION 

In this section, we �rst describe the design principles behind our 
core concept of widgets. We then describe our synthesis frame-
work for dynamically synthesizing these widgets. D���V�� is a 

cross-platform web application that is implemented with React and 
Typescript for the front-end UI and Python for the back-end server. 

3.1 Dynamic Widgets 
Widgets as modular sub-components. With D���V��, we 

introduce dynamic widgets, which are small modular UI components 
that focus on a particular edit or interaction task at hand. The edit 
can involve simple changes to one or multiple chart properties, such 
as changing the position of the legend or slicing, or can involve a 
data transformation operation executed on the data before chart 
rendering, such as �ltering speci�c ranges on the axes. At a high 
level, a widget has two components: 

• An HTML script that describes the UI elements of the widget 
which the user will interact with to manipulate the visual-
ization. e.g., An HTML script containing an <input> element 
of type slider to change the x-axis label size of the chart (see 
Figure 6). 

• A JavaScript callback function that contains the code that 
will be executed to manipulate the visualization and/or data 
whenever the user interacts with the widget. This callback 
function is of the form callback(event, chart) => (transforms, 
chart), which accepts both the HTML event object and the 
current chart as inputs and generates an optional list of 
transforms and the updated chart as outputs. This callback 
function is attached to the onChange event handlers of all 
the input elements in the HTML script. 

An example of the dynamic widget is shown in Figure 6 along with 
its HTML script and Javascript callback function. 

One of the main design choices of our system is to ensure the 
modularity of the widgets so that edits from two di�erent wid-
gets do not con�ict or manipulate the chart in unexpected ways. 
This requirement has implications for how we handle charts and 
transforms: 

Handling charts. To ensure that each widget only changes a 
small component of the chart, we recognized that using a declara-
tive chart representation is preferable to an imperative one. One 
such declarative representation is to use a JSON object (called a 
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Figure 6: A dynamic widget is comprised of two components — (1) The HTML script de�ning the UI (2) The JS callback function 
that listens for the changes in the UI to edit the visualization. 

speci�cation) to encode the properties of the chart. For example, 
with JSON representation, to change the x-axis title, one can just 
edit the chart speci�cation as spec.encoding.x.title = "axis title" 
without having to change anything else regarding the chart. 

In this paper, we use Vega-Lite speci�cations [47] for repre-
senting charts since it provides us with a concise and declarative 
representation of visualization while also maintaining expressive-
ness. Vega-Lite also provides a well-supported rendering engine 
that is compatible with all the major web frameworks. 

Handling data transformations. Data transformations are 
an important part of visualization editing. D���V�� handles all 
the Vega-Lite data transformations, e.g., �lter, fold, �atten, etc. In 
D���V��, transforms are represented as a list of objects similar to 
Vega-Lite. Each widget’s callback outputs a list of transforms. The 
transforms are performed in the order in which they are speci�ed in 
this list. If there are multiple widgets with transforms, we execute 
transforms in the chronological order of the widgets. To enable this, 
we keep a mapping of the widgets to their most recent callback’s 
output transforms, so that we can execute all widget’s latest trans-
forms before rendering the chart for every edit. For every widget 
that adds transformations to the chart, D���V�� adds a switch so 
that users can enable or disable the transform. e.g., Let’s take the 
example of Alex from Section 2. When they request a widget to 
slice the date range, the synthesized widget adds a �lter transform 
on the data. D���V�� identi�es this as a special Transform Widget, 
and allows Alex to dynamically enable or disable the transform to 
see the original chart and the �ltered chart. 

3.2 Synthesis Framework 
Below we describe our synthesis framework by splitting it into three 
stages: pre-processing, LLM-based synthesis, and post-processing. 
Our framework comprises of 3 main modules: a Data Summarizer, 
a Chart Engine, and a Widget Engine as shown in Figure 7. 

3.2.1 Pre-processing: Data Summary and Visualization Pre-processing. 

To generate visualizations and synthesize dynamic widgets, the 
LLM needs an accurate context of the data the user is working with. 
However, due to the limited context window supported by LLMs, 
we cannot pass the whole data to the LLM. Hence, to augment 
LLMs with grounding context about the data, we borrow the Data 

Summarizer from Lida [22]. This summarizer is used to produce a 
dense yet compact summary for any given dataset that is useful as 
a grounding context for visualization tasks. For every LLM query 
in the subsequent steps, we pass the data summary instead of the 
data. First, the summarizer applies rules to extract dataset proper-
ties including atomic types (e.g., integer, string, boolean), general 
statistics (min, max, unique values, etc.), and a random list of n 
samples for each column using the pandas python library [8]. Then 
the base summary is enriched by an LLM to include a semantic 
description of the dataset (e.g., a dataset of stock prices for top 5 
tech companies for 10 years), and �elds (e.g., Stock price in USD) 
as well as �eld semantic type prediction [62] (see Figure 8). 

Before sending any edit or widget synthesis queries to the LLM, 
D���V�� splits the data from the visualization speci�cation, and 
any other unnecessary chart properties (like canvas con�guration 
properties) to prevent context over�ow. This also ensures that the 
rendering engine can remain responsive to UI changes. 

3.2.2 LLM-based Synthesis of Visualization and Dynamic Widgets. 

Synthesizing visualization. The Chart Engine is primarily re-
sponsible for synthesizing visualizations — either new visualiza-
tions or editing existing visualizations based on the natural lan-
guage prompt from the user. The Chart Engine uses the enriched 
data summary from the summarizer, the user prompt, and optionally 
an existing Vega-Lite speci�cation to return a Vega-Lite speci�ca-
tion using a LLM [Fig 9]. To ensure that the LLM produces a valid 
Vega-Lite speci�cation, and to prevent version-based errors, we 
instruct the model to only use the Vega-Lite Schema v5 and to 
produce a valid JSON output in a markdown code-block format 
with language descriptors. Since chat-based models like GPT 3.5 are 
trained to produce verbose output, using a Markdown code-block 
format ensures we can reliably extract the code block. To maintain 
consistency of output, we provide some few-shot learning examples 
of Vega-Lite speci�cation with its description to the model. 

Synthesizing dynamic widgets. The Widget Engine is primar-
ily responsible for synthesizing dynamic widgets. The widget en-
gine uses the data summary, current Vega-Lite chart speci�cation, 
and the user prompt to return the widget components–both HTML 
script and the Javascript callback function. 

To ensure that the LLM produces a valid program for the widget 
we provide strict templates for HTML and JavaScript. The HTML 
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Figure 7: D���V�� system architecture. The Data Summarizer generates a summary from input data to assist visualization 
and widget synthesis. The Chart Engine applies changes to visualizations based on chart editing instructions, and the Widget 
Engine is responsible for synthesizing dynamic widgets from both types of user commands. 

Figure 8: The Summarizer constructs an NL summary from 
extracted data properties. 

Figure 9: Given the data summary, the NL prompt, and an 
(optional) chart speci�cation, the chart engine produces an 
updated chart speci�cation. 

template de�nes the empty <div> stub with commented instruc-
tions. The JavaScript template has an empty JS function stub with a 
prede�ned return value. This template improves the reliability and 
predictability of the code generated. Templates also help us verify 
the code in the next step of Program Analysis. We also provided a 
few-shot examples of HTML and JS code to the model to maintain 
consistency of output. 

3.2.3 Post-Processing through Program Analysis. 

Processing visualizations. Once we extract the JSON speci-
�cation from the markdown output, we parse the speci�cation to 
check for JSON formatting errors and then compile the Vega-Lite 
speci�cation to check for syntax or schema errors in the synthe-
sized speci�cation. In case of errors, we provide the error message 
and ask the model to �x the errors in the same conversation context. 
If this doesn’t work, we re-try the prompt once again. 

Processing dynamic widgets. To prevent errors, and ensure 
the validity of the widgets, D���V�� performs a series of post-
processing steps on the HTML and JS code synthesized by the 
LLM using program analysis. We mention some of the many steps 
involved in the post-processing stage below. Each step is achieved 
by parsing the HTML and JS code to an abstract syntax tree (AST) 
and manipulating the AST. 

• Parse the HTML code, to ensure there are no con�icts in the 
HTML “ID” property between the synthesized widgets and 
previous widgets. If we �nd con�icts, we programmatically 
modify the ID property and modify the corresponding JS 
callback function. 

• Parse the synthesized JS callback function to ensure it has 
the right function name and valid function parameters. 

• Identify and replace the HTML IDs used in the callback 
function that were modi�ed in the HTML script. 

• D���V�� ensures that the properties of the chart being edited 
are either already present in the current chart or the callback 
function handles the null case correctly. 

3.3 User Interface Implementation 
D���V�� is implemented as a web application with React and Type-
script. We use the html-react-parser [7] library to attach and detach 
widgets on the �y as they are created and deleted. D���V��’s backed 
hosts the data summarizer (implemented in pandas) implemented 
as a �ask web server that communicates with the front-end using 
REST API. We use the OpenAI API [1] to issue queries to the LLM. 
We chose gpt-3.5-turbo as the target LLM in our current implemen-
tation from OpenAI because it strikes the right balance of accuracy 
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vs. speed. Since we had to make edits and synthesize widgets within 
interactive time to prevent annoying the users, the GPT-3.5 model 
was responsive enough and accurate enough to suit our needs. We 
have also tested our tool with the more advanced GPT-4 model, 
which supports longer context and has better instruction-following 
capability to generate widgets more accurately. However, the la-
tency is too high for smooth interaction. 

4 USER STUDY DESIGN 
To understand how users can use D���V�� to solve visualization 
editing tasks, we conducted a within-subjects lab study with 24 
participants. In the study, users are asked to solve two sets of �ve 
visualization editing tasks, one set using D���V�� and another 
using a baseline NLI-based tool. We aim to answer the following 
research questions: 

RQ1 Does D���V�� reduce users’ e�orts to edit visualizations? 
RQ2 In what scenarios do users prefer to use dynamic widgets 

4.3 Tasks 

compared to a baseline tool? 
RQ3 What are users’ strategies to work with dynamic widgets? 

4.1 Participants 
We recruited 24 participants (13 female, 10 male, 1 chose not to dis-
close) through the mailing lists of two research universities. Of the 
24 participants, 2 worked with data visualization at least once daily, 
4 participants worked with visualizations weekly, 14 participants 
worked with visualizations at least once a month, and 4 participants 
less frequently but still occasionally worked with data visualization. 
Participants mentioned they had prior experience with a variety 
of visualization tools and libraries including matplotlib (Python), 
Seaborn (Python), ggplot (R), Tableau, Excel, D3, and more. None of 
the participants had any experience with Vega-Lite or Vega libraries. 
Three of the 24 participants reported they performed data analysis 
daily, 6 participants did it weekly, 8 participants did it at least a few 
times a month, and 7 participants did it occasionally (less than a 
few times a month). Participants received a $25 Amazon gift card 
as compensation for their time. 

4.2 Study Conditions 
We consider the following two conditions in our user study. We 
choose the NL-based visualization editing approach as the base-
line [23]. 

• Baseline Condition (UINL): We modi�ed the D���V�� 
interface with the support for Natural Language Commands 
along with a set of pre-populated UI widgets for basic chart 
manipulation (e.g., chart title, axis range, etc.) and remove 
the support for dynamic widgets. By providing both NL 
and basic UI supports for users to freely choose from, we 
believe this is a fair state-of-the-art baseline tool for the 
study. Pre-populated widgets are similar to static UI users 
use to edit visualizations (like Excel, Google Sheets, etc.). 
For the editing tasks, users can use a combination of natural 
language commands and the pre-populated widgets to edit 
the chart. 

• Experiment Condition (UIDW): This is D���V�� with the 
support for dynamic widgets on top of UINL. With this UI, 

the users can edit the chart using natural language com-
mands, add custom dynamic widgets, or use the same set of 
pre-populated widgets. As an addition, whenever the user 
provides a natural language edit command to the AI, we will 
synthesize and automatically add a dynamic widget. We dis-
play the synthesized widgets in reverse chronological order, 
so the latest synthesized widget is shown at the top. 

Note that we didn’t explicitly set up a widget-only baseline 
based on an existing visualization tool as it would require us to 
restrict participants to only people with experience with a certain 
visualization tool, hence limiting the diversity of the participants. 
However, we do collect user feedback in the interview on their 
opinions on how their experiences with D���V�� di�er from their 
favorite tools. 

We selected three data visualization tasks derived from popular 
datasets. Since our focus is on visualization editing tasks, not the 
authoring task, the participant starts each task with a base dataset 
and a base visualization. Informed by the formative study con-
ducted by Wang et al. [55], the participants will have to perform a 
series of edits to the visualization. Each task contains �ve sub-tasks 
containing instructions to perform edits to the base visualization. 
We include the following three types of questions: (1) editing the 
visualization with a concrete editing task, (2) exploratory editing 
task (e.g., try a few options and then pick the best stroke width), 
and (3) editing tasks with a question to be answered based on the 
chart (e.g., zoom in to a time window or range, �lter data, etc.). 

Task 1 (Stock Trends). Given a dataset of stock prices for the 
top �ve tech companies over ten years and the baseline chart be-
low visualizing the stock trend, the user is asked to complete the 
following sub-tasks. 

(1) Change the chart title to “Stock Trend”. 
(2) Try di�erent lines stroke widths and �nd the best one that suits you. 
(3) Edit the chart to show the stock trends for AAPL and MSFT only. 
(4) Change the y-axis max range to 250 to get a zoomed in view. Then, 

answer the question: “By just viewing the chart, get the minimum 
and maximum stock price for both AAPL and MSFT”. 

(5) Now compare only between IBM and MSFT. Then, answer the ques-
tion: “By just viewing the chart, �nd the month and year, where 
the di�erence in stock price between the two companies were maxi-
mum”. 
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Task 2 (Unemployment Data). Given a dataset of USA unemploy-
ment statistics over multiple sectors and the stacked area chart 
below visualizing the distribution of unemployment numbers, the 
user is asked to complete the following sub-tasks. 

(1) Change the x-axis title to “Timeline”. 
(2) Try out di�erent legend positions (inside and outside the chart) to 

choose the best position that suits you. 
(3) Edit the chart to show the trends for Construction and Agriculture 

sectors only. 
(4) Edit the y-axis max date to 06/01/2004 (June 2004). Then, answer 

the question: “By just viewing the chart, get the approximate month 
and year where the di�erence in the unemployment rate between 
the two sectors were maximum”. 

(5) Now compare only between Finance and Construction. Then, answer 
the question: “By just viewing the chart, get the approximate month 
and year where the di�erence in the unemployment rate between 
the two sectors were maximum”. 

Task 3 (Weather Data). Given a dataset of Seattle weather for 
ten years and the stacked bar chart below visualizing the aggre-
gated distribution of weather over each month, the user is asked to 
complete the following sub-tasks: 

(1) Change the y-axis title to “Number of Records”. 
(2) Rotate the x-axis labels by 45, 65, and 90 degrees and choose the 

best one for you. 
(3) Change the color of each weather type to the following colors: Sun 

to Yellow, Snow to Gray, Rain to Blue, Fog to Green, Drizzle to 
Purple. 

(4) Edit the chart to only show “Snow” weather for all the months. Then, 
answer the question: “By just viewing the chart, �nd the month with 
the lowest snow days”. 

(5) Edit the chart to only show “Fog” weather for all the months. Then, 
answer the question: “By just viewing the chart, �nd the months 
with the highest fog days”. 

4.4 Study Procedure 
To enable easy access to D���V��, we hosted both the control 
and the experiment versions of the tool online which could be 
accessed by participants via their web browser. After obtaining 
user consent, we recorded the audio and the screen-cast of each 
participant, and the users were encouraged to think aloud during 
the study. In each study session, the participant completed one of 
the three tasks using the control condition and another task with 
the experiment condition. To mitigate the learning e�ect, both the 
order of task assignment and the order of tool assignment were 
counterbalanced across participants through random assignment. 
Therefore, for each unique combination of 3 tasks and 2 conditions, 
we have 8 participant data points. Before each task in a study 
session, the participant was given a tutorial of the assigned tool 
and was allowed to explore using the tool for 5 minutes with a test 
dataset. Before starting each task, we also explained the dataset 
and the base visualization and provided time for the participants 
to explore and understand the dataset. We set a time limit of 15 
minutes for each task. After each task, the participant �lled out a 
post-task survey to re�ect on their experience using the tool. After 
�nishing both tasks, participants answered a �nal survey to directly 
compare the two conditions. At the end of each study session, we 
also conducted a brief informal interview at the end of the study 
to get the participant’s subjective experience participating in the 
study and feedback for the tool. 

4.5 Measurements and Analysis 
We recorded both quantitative and qualitative metrics during the 
user study. We measured the success/failure for each editing sub-
task the participant had to perform. A sub-task is considered failed if 
the participant is unable to �nish the task despite multiple attempts 
with the tool. They are allowed to retry as many times as they prefer. 
Through app telemetry, we also recorded all the natural language 
commands the user provided to the tool and the interactions with 
the widgets in the tool. In the post-task survey the user �lled after 
every task, we recorded self-reported NASA Task Load Index, self-
reported Likert scores for ease of completing the task, and how well 
the AI understood their intent (for survey questions look at Table 1). 
In the post-study survey the user �lled at the end of both the tasks, 
we recorded the participant’s self-reported preference and modi�ed 
the NASA Task Load Index that focused directly on comparing 
their experience between the two tools(for survey questions look at 
Table 2). For qualitative analysis, the �rst author performed open-
coding on the participants’ responses, and the audio transcripts to 
identify themes, and then discussed with co-authors to re�ne the 
themes over multiple sessions. These themes are used to explain the 
qualitative results. We use paired t-test to measure the statistical 
signi�cance of quantitative metrics. 

5 USER STUDY RESULTS 
5.1 Task Completion 
Participants using the UINL tool failed to complete sub-tasks more 
often than the participants using the UIDW tool. When using the 
UINL tool, seven participants (P4, P5, P6, P10, P11, P16, P17) failed 
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Q1.1. It was easy to complete the tasks using the tool provided. (1-Strongly Disagree, 7 - Strongly Agree) 
Q1.2. The AI understood my intent and made the right edits. (1-Strongly Disagree, 7-Strongly Agree) 
Q2.1. How mentally demanding was this task with this tool? (1—Very Low, 7—Very High) 
Q2.2. How hurried or rushed were you during this task? (1—Very Low, 7—Very High) 
Q2.3. How successful would you rate yourself in accomplishing this task? (1—Perfect, 7—Failure) 
Q2.4. How hard did you have to work to accomplish your level of performance? (1—Very Low, 7—Very High) 
Q2.5. How insecure, discouraged, irritated, stressed, and annoyed were you? (1—Very Low, 7—Very High) 

Table 1: After each task, participants rated (on a 7-point Likert scale) their experience (questions 1.1 - 1.2) and the subjective 
workload using NASA TLX measures (questions 2.1 - 2.5). 

Q1.1. Which tool would you prefer to use? (1-UIDW, 7-UINL) 
Q2.1. Which tool was more mentally demanding to communicate? (1-UIDW, 7-UINL) 
Q2.2. Which tool made you feel hurried or rushed during the task? (1-UIDW, 7-UINL) 
Q2.3. Which tool made you feel successful in accomplishing the task? (1-UIDW, 7-UINL) 
Q2.4. For which tool did you work harder to accomplish your level of performance? (1-UIDW, 7-UINL) 
Q2.5. Which tool made you feel more insecure, discouraged, irritated, stressed, and annoyed? (1-UIDW, 7-UINL) 

Table 2: After �nishing both the tasks, participants comparatively rated (or a 7-point Likert scale) their tool preference (question 
1.1) and the subjective workload using NASA TLX (questions 2.1 - 2.5) comparing between the two conditions. (note: in the 
survey, the names of the UI were coded to prevent bias). 

one of the sub-tasks compared to two participants (P1, P20) when us-
ing the UIDW tool. None of the participants failed on more than one 
sub-task during the study. It is important to note, that these failures 
are despite participants retrying the tasks as many times as they 
want. Figure 10 shows the self-reported score (Likert scale; higher 
is better) for ease of completing the task with the tool provided 
for each condition. Participant using UIDW found it signi�cantly 
(? = 0.004) easier to complete the task (` = 6.26, f = 0.86) compared 
to using the UINL (` = 5.13, f = 1.6). 

The average time ¯ C for participants in the UINL to complete 
the task is 7 minutes and 22 seconds (C̄task_1 = 600500 , C̄task_2 = 
902300 , and C̄task_3 = 603700). In the UIDW condition, participants 
took an average time of 6 minutes and 36 seconds (C̄task_1 = 602000 , 
C̄task_2 = 700700 , and C̄task_3 = 602300) to complete the task. The 
di�erence in task completion time between the two conditions is 
not statistically signi�cant. Note that the exploratory nature of 
some sub-tasks (e.g., task 1.3) encourages participants to spend 
time exploring the visualization, and the completion time is not a 
de�nitive measure of performance. We report the completion time 
as a setup for understanding user e�orts which will be discussed in 
the following sections. 

We analyzed the session recordings to identify the root cause of 
these task failures. Six of the seven failures in the UINL condition 
and both the failures in the UIDW condition happened in Task 2.4, 
where the participants had to slice the date range for the chart. This 
was due to the model returning the dates in an incorrect format 
when editing the Vega-Lite spec from an NL command. Vega-Lite 
uses a speci�c JSON date format, e.g. {“date”: 14, “month”: 3, 
“year”: 2004}, whereas the model in many instances used strings 
to represent the date (e.g. “2004-03-14”), resulting in an error. 
When generating the widget, the model seems to make this mistake 
fewer times compared to editing the chart speci�cation directly. 
The remaining failure in the UINL condition occurred during Task 
1.5, where the participant had to change the �ltering values from 
[MSFT, AAPL] to [MSFT, IBM]. In this instance, the model added an 

Figure 10: Participants self-reported scores for NASA TLX 
questions, ease of completing the task, and how well the AI 
understood their intent. 

extra con�icting �lter transformation instead of editing the existing 
transformation. 

5.2 Self-reported Cognitive Task Load Index 
In the post-task self-reported NASA TLX ratings where participants 
scored their cognitive load performing the tasks in both the condi-
tions (check Table 1 for questions), we did not �nd any statistically 
signi�cant di�erence in the mental demand, how hurried or frus-
trated they felt, the e�ort required to complete the tasks and their 
perception of success (see Figure 10). 

In the post-task survey where the participants directly compared 
their cognitive load between the two conditions (see Table 2 for 
questions), when using the UIDW tool, 80% of participants felt 
less mental demand, 83% of participants felt less hurried, 62% of 
participants felt more successful, 75% of participants spent less 
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Figure 11: Participants self-reported cognitive load and pref-
erence scores that directly compare the two conditions. 

e�ort, and 75% of the participants felt less frustrated compared to 
when using UINL tool (see Figure 11). 

5.3 User Behavior 
5.3.1 Natural Language Commands vs. Dynamic Widgets usage. 
Figure 12 shows the usage data for the number of natural language 
commands invoked by the participants, and the number of interac-
tions with both dynamic widgets and pre-populated widgets. 

In the UINL condition, participants used an average of 8.4 natural 
language commands per task (including all sub-tasks) to edit the 
visualization. This usage signi�cantly (? < 0.001) decreased to just 
2.67 natural language commands when using the UIDW condition. 
This was indeed replaced by the dynamic widget usage, where 
participants on average used it 13.25 times when using the UIDW 
condition. This con�rms our observation of an increase in the num-
ber of times participants �ne-tuned when using UIDW condition. 
The widgets reduced the barrier to trying out many di�erent values 
before settling on the edits. For instance, P6 said “With dynamic 
widgets, I like how easy it is toggle or make edits in small increments 
and try out many di�erent values. I can see what I’m clicking and 
have �ne-grained controls”. There was no signi�cant di�erence in 
the usage of pre-populated widgets between the two conditions. 

5.3.2 User Strategy. In the UINL condition, we observed two ma-
jor strategies used by participants to perform the tasks. Six of 24 
participants (P7, P9, P12, P13, P15, P17) always used natural lan-
guage commands to edit the visualization irrespective of any pre-
populated widgets available to perform the edit. Whereas, the other 
18 participants �rst looked for a pre-populated widget to perform 
their edits before resorting to natural language commands. 

In the experiment condition UIDW, we observed two major strate-
gies used by participants. Nine participants (P2, P3, P4, P5, P6, P8, 
P17, P18, P21) preferred to use only the widgets to make all the 
edits. These participants used the AI only to synthesize dynamic 
widgets without making the edits and then chose to make the edits 

Figure 12: Usage metrics show the number of times the user 
used pre-populated widgets, dynamic widgets, and natural 
language commands. 

by interacting with the synthesized widget instead. Ten partici-
pants (P7, P10, P12, P13, P16, P19, P20, P22, P23, P24) preferred to 
use the natural language command to perform the broad edit, and 
then use the automatically synthesized dynamic widgets to make 
�ne-grained edits. P23 said “I would prefer to use the edit prompt 
for the �rst time, and use the dynamic widgets for further edits and 
adjustments”. P15 chose to use only natural language commands to 
make the edits and said “I think that [UINL ] was easier to use. It is 
quite easy to make edits quickly using AI commands”. The remaining 
participants used a combination of widgets and NL commands with 
no particular preference. 

5.3.3 Prompting Strategy. Participants when prompting the AI to 
edit the chart generally provided their intent (goal) to the AI. For 
all the sub-tasks, they structured their prompt as [ACTION VERB] 
+ [CHART PROPERTY] + [VALUE]. Some examples are “Change 
the stroke width to 5”, “Rotate the x-axis labels to 65 deg”, “change 
the x-axis label to timeline”. 

However, we did notice a variety of NL commands for �ltering-
based sub-tasks (Tasks 1.3, 1.5, 2.3, 2.5, 3.4, 3.5). Some participants 
directly mentioned the values to keep. e.g., “show me �nance and 
construction sectors only”. Some participants mentioned values to 
remove. e.g., “Remove everything other than MSFT and AAPL” or 
“Remove the plot for AAPL. Show me the variation of IBM”. Other 
participants who weren’t pro�cient with charting libraries used 
incorrect chart property names like “visibility of the strokes with 
only MSFT and AAPL selected”, “remove all legend categories except 
construction and agriculture”. In three such instances, the model still 
performed the right �lter transformation. For two instances, the 
model tried to modify the wrong property (like opacity) resulting 
in an incorrect chart. 

When prompting the AI for widgets, participants skip providing 
the value in the prompt and directly manipulate it via the UI. Their 
prompt was generally structured as [ACTION VERB] + [CHART 
PROPERTY]. Some examples are, “change x-axis limit”, “change date 
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range”, “Change the x-axis max date”. For instance, P3 said “Just 
an action along with the part of the chart that needed to be edited”. 
P23 said “I keep it as short as possible. Similar to [edit] commands, 
but without the data”. In the next sub-section, we show evidence 
of how this makes prompting for a widget easier than using ML 
commands to directly edit the chart. By taking advantage of data 
context, domain constraints, and clever prompt engineering using 
templates within D���V��, we can generate dynamic widgets with 
very little ambiguity with just simple instructions from users [60]. 

5.4 User Preference 
In the post-task survey, the users were asked to rate their prefer-
ence between the UINL and UIDW conditions. All the participants 
except P15 (96%) strongly preferred using D���V�� compared to 
the baseline tool. The informal interview and survey responses 
shed light on the reasons, which we discuss in this sub-section. 

Finding 1: Dynamic widgets make repetitive edits easier. 
Sixteen participants (P1, P3, P4, P5, P6, P7, P9, P11, P13, P14, P17, 
P18, P19, P21, P22, P23) explicitly mentioned that dynamic widgets 
greatly reduced e�ort needed to perform repeated edits. By us-
ing dynamic widgets, they reduce the number of natural language 
commands they need to type – which is very time-consuming. P5 
said,“I will rather just interact with the dynamic widgets. Compared 
to typing commands, I would just interact with an UI at the end of the 
day”. P7 commented “Once the widget was there for a certain type of 
task, I preferred using the widget as clicking is less cumbersome than 
articulating and typing”. Moreover, when using dynamic widgets, 
participants interacted with the LLM only once when creating the 
widgets. Subsequent edits are performed instantly when compared 
to using NL commands, where they have to wait for the response 
from LLM every time they have to perform an edit. P6 said, “Dy-
namic widgets were the foundation for the edits I made and I can 
do however many times I want. Faster than asking the AI again and 
again”. This also explains the increased usage of dynamic widgets 
mentioned in (Section 5.3.1). Users using UIDW, tried a lot more 
values for exploratory sub-tasks since it was easier to repeat the 
edits, compared to using UINL. 

Finding 2: Visual feedback enhances understanding and 
exploration. Nine participants (P2, P4, P5, P8, P11, P17, P18, P23, 
P24) mentioned they prefer using dynamic widgets due to the in-
stant visual feedback the widgets provided when performing the 
edits. This visual feedback works both ways. First, when the user 
makes the edits using the dynamic widgets, the edits re�ect on the 
chart immediately, since we aren’t waiting for a response from the 
LLM. P23 summarizes this by saying “The real-time update with 
widgets, rather than waiting for AI, was super cool. I can interactively 
see what happens with the chart”. It is important to note that these 
visualizations are inherently static with no interactivity – but by 
creating and using dynamic widgets, participants are interacting 
with an inherently static visualization. 

Second, the UI provides visual feedback by retaining the edit 
information in the state of the UI. P24 explains this by saying “with 
dynamic widgets, I can also visualize the changes. For example, when 
I change the color, I can just see the color directly in the widget. That is 

very helpful, that is just e�cient”. Dynamic widgets provide clear vis-
ibility of chart (system) status, improving the visual feedback [42]. 
In other words, dynamic widgets help users overcome the usabil-
ity challenge of the gulf of evaluation (understanding the system 
state) [11, 43]. 

Finding 3: Prompting to create dynamic widgets is easier 
and more reliable. Figure 10 shows the participants’ self-reported 
score (Likert scale; higher is better) for how well the AI under-
stood participants’ intent. Participants using UIDW tool (` = 6.04, 
f = 1.36 Likert scale) reported that AI understood their intent 
signi�cantly better (? = 0.024) than participants using UINL tool 
(` = 4.95, f = 1.77 Likert scale). 18 of the 24 participants using 
UINL had at least one failed natural language edit command, and 8 
of the 24 participants had more than 2 failed natural language edit 
commands. In contrast, only nine participants using UIDW had at 
least one erroneous widget, and no participant had more than 2 
erroneous widgets when performing the tasks. 

Twelve participants (P1, P2, P3, P5, P6, P11, P14, P16, P17, P21, 
P22, P24) explicitly noted that it was easier and more reliable to 
prompt for dynamic widgets than to use just natural language to 
edit the visualization. For instance, P3 commented, “with [UINL ] I 
had to provide my chat command as speci�c as possible to prevent 
errors. But with dynamic widgets in [UIDW ] I didn’t have to be very 
speci�c”. P6 commented on the reliability by saying “I like the ability 
to execute the edits using dynamic widget rather than leave it up to 
chance using the AI”. 

One probable reason for improved reliability could be: when us-
ing only natural language commands, the LLM will have to generate 
the modi�ed Vega-Lite spec for the whole chart in the response. 
This increases the probability of errors, since during the generation, 
the LLM can potentially change any other unrelated property in 
the speci�cation. Whereas, when generating dynamic widgets, the 
model synthesizes a JavaScript callback function that only edits 
one (or a few) properties of the Vega-Lite spec, greatly reducing 
the probability of errors. 

Finding 4: Dynamic widgets enhance the sense of control 
over NL. Seven participants (P3, P5, P6, P8, P10, P16, P20) men-
tioned that using dynamic widgets provided them a greater sense 
of control over the outcome when making edits to the visualization. 
Users felt that the widgets provided a sense of structure to the edits 
performed and a sense of autonomy. P8 said “The widgets gave me a 
feeling of autonomy to make more changes compared to the AI. It had 
created some kind of structure for achieving the change”. Further, P6 
said “typing the text commands was a little non-ideal. Not having the 
widgets made it feel like I don’t control the edits. [natural language] 
commands made it feel like there was some level of uncertainty”. 

Finding 5: Dynamic widgets enable customization, but can 
be overwhelming for extended use. Nine participants (P1, P3, 
P6, P9, P10, P11, P16, P14, P18) mentioned they liked using dynamic 
widgets since it allowed them to customize their own UI to suit 
their editing intents. P7 said “The dynamic widgets are pretty cool. 
It’s like writing a whole tool for yourself, but instead of writing code, 
it is instantly available”. Since we present the widgets in the reverse 
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chronological order of their creation, P18 said “I like dynamic wid-
gets, because it sort of stores the history of edits I made. I can refer it 
back whenever I want to change it if I don’t like”. 

Compared to traditional static UIs, dynamic interfaces are con-
stantly changing. Five participants (P21, P17, P18, P8, P23) pointed 
out that creating dynamic widgets can get overwhelming over long 
editing sessions with widget panels constantly being changed, and 
wanted some way of either pausing widget creation or ability to 
categorize and control the widgets that are shown. For instance, 
P23 said “ If I made a lot of them [dynamic widgets], then it might 
get tricky. It’ll be nice to have automatic grouping based on the kind 
of edits the widgets do”. Similarly, P8 said “It would be nice to group, 
collapse, or create multiple relevant and related widgets, just like 
Photoshop, to customize better”. In contrast, P7 said “If it was a long 
series of tasks, I would maybe just prefer a stable interface”, and P15 
said — “with [UIDW ] I’m not sure how dynamic widgets are helpful. 
Using the commands was just simpler”. 

5.5 Tool Performance 
To understand the performance of the D���V�� using the GPT3.5 
model, we performed a postmortem analysis to measure the latency 
faced by the participants due to the model response time, and the 
number of automatic retries required to generate the correct Vega-
Lite speci�cation and widget code. We measured this by re-playing 
all the NL visualization edit commands, and the NL add widget 
commands provided by the participants during the user study. On 
average, each query to the GPT3.5 model added a latency of 1.47 
seconds (f = 0.34 seconds). Also, on average for each NL edit / add 
widget command, D���V�� had to automatically retry 1.16 times 
(f = 0.58 times) to �x syntax or semantic errors before producing 
the correct output. 

6 DISCUSSION AND FUTURE WORK 
Modalities beyond NL and UI widgets. D���V�� employs two 

di�erent modalities for users to specify the kinds of edits they want 
to make to the chart: natural language commands and interaction 
through dynamic widgets. This design combines the strengths of 
both modalities so the user can better communicate the intent to the 
AI agent and quickly make repeated precise edits to the visualiza-
tion. This was re�ected in the study by the participants’ preference 
for the tool, and how they interacted with both modalities. 

An interesting future direction is to expand the modalities be-
yond the natural language and widget interaction by adding support 
for voice commands as well as gestures and direct manipulation of 
the chart. For example, instead of the user giving an NL command 
“Move the legend to the bottom of the chart”, the user can simply click 
and drag (though mouse, touch, or digital pens) the legend to the 
bottom of the chart to make the edit. The user doesn’t need to know 
they have to modify legend, rather they can simply point us toward 
it. Similarly, D���V�� also has the potential to include by-example 
speci�cations to let users demonstrate editing examples by editing 
parts of the visualization and then letting the tool generalize edits 
to other parts of the visualization. 

However, multiple modalities also come with their challenges. 
For example, it is not always easy for users to �gure out which 
modality to use and when. Hence, more research is needed to help 

users learn the bene�ts and disadvantages of each modality so that 
they make an informed choice. 

Static vs. Dynamic UI. One bene�t of using natural language 
commands and dynamic widgets over traditional static UI is the 
ability to ease the gulf of execution. With static UI, the user has to 
know how and where to perform the edits, which can be cognitively 
demanding [15]. Whereas, with NLIs and Dynamic widgets, the 
users only need to specify their intent. The �ip side of this argument 
is, that despite the learning curve, over time users will learn and get 
used to the static UIs. However, with dynamic UIs, the interface is 
constantly changing, which can potentially increase cognitive load 
for the user, especially in long editing sessions and for users with 
editing expertise. Some participants from the study did express this 
concern and suggested having a way of categorizing the widgets 
predictably. Longer term usability study would provide insights to 
understand how constantly changing UI a�ects usability. Unlike 
traditional interfaces, another limitation of D���V�� and other 
purely NL-based interfaces is that they do not present all possible 
options to the user at all times. This is a double-edged sword; Due 
to the ad-hoc nature of NL interfaces, NL commands for adding 
widgets/editing visualizations can sometimes help users discover 
previously unknown features (similar to observations in [13]), and 
other times can shift the onus of discovering the tool’s capabilities 
onto the user leading to mistrust and distrust [44]. More research 
is needed to study and �nd methods to overcome these limitations. 

Another interesting future direction is to inspect how we can 
take advantage of dynamic UI widgets’ low programming require-
ment to turn end users into “no-code developers” with the ability to 
customize/DIY their interaction panels to augment static GUI. For 
example, with dynamic widgets, an end user can construct their 
own panel that best suits their daily tasks as shortcuts for complex 
tasks. For example, a user who often works on geographical data 
analysis can create a custom panel using dynamic widgets specially 
for map manipulation functions to reduce map editing e�orts. 

Supporting imperative plotting libraries and lower-level 
visualization grammars. Dynamic widgets are designed around 
declarative high-level visualization grammar to enable composi-
tional editing (e.g., VegaLite’s JSON representation for visualization 
objects). The declarative syntax helps the widgets to be modular 
and be synthesized and used in any order the user wishes. Despite 
their advantages, high-level grammars expose fewer options than 
low-level grammars or imperative libraries for more complex visu-
alization editing tasks (e.g., to make parts of a line dashed while the 
rest solid, would require visiting lower-level details of how lines 
are represented). To support editing of visualization in these low-
level languages, we envision combining D���V�� with bidirectional 
editing approaches which leverage program analysis and synthesis 
techniques to propagate surface-level edit requirements to edits 
over program structures or parameters. 

Dynamic widgets for accessibility and other applications. 
Prior work on dynamically synthesized UIs stemmed from accessi-
bility research, like SUPPLE [25] and SUPPLE++ [26] to accommo-
date motor and vision capabilities. In the space of dynamic widgets 
for visualization tasks, there are many possible UIs to perform the 
same task (e.g., slider vs. number input to control the font size). 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Vaithilingam, et al. 

Every type of UI has accessibility trade-o�s based on the user’s 
needs. In the future, we can imagine a version of D���V�� that lets 
the user provide their interface constraints and preferences, and D��
��V�� automatically synthesizes UI that matches these constraints. 
Prior work like [33, 53] has accomplished UI synthesis based on ex-
amples or demonstrations. A potential research direction would be 
to add accessibility constraints and exploit the general knowledge 
of LLMs to create accessible widgets. 

While D���V�� is designed for visualization editing tasks, we 
believe dynamic widgets can also bene�t general applications that 
have extensive con�guration options (e.g., document processing 
software, video processing applications). Users can also take ad-
vantage of dynamic widgets’ low programming requirements in 
no-code / low-code tools (like Excel / Tableau) with the ability to 
customize or DIY their interaction panels to augment existing static 
UI. Investigating how dynamic widgets can be generalized across 
di�erent application domains is worth studying in the future. 

D���V�� design opportunities. There are a lot of opportuni-
ties to improve D���V�� in the future, some of which we highlight 
here. In the UINL condition, some participants anticipated repeated 
edits and copied the NL command, for reuse, before submitting it. In 
the future versions of D���V��, we can enable users to access the 
history of NL commands to make re-running NL commands with 
small edits easier for the user. One of the most requested features 
from the participants is for more ways to customize and manage a 
large number of dynamic widgets. This can involve categorizing 
widgets by topic (like Adobe Photoshop), and collapsing/expanding 
(sections of) widgets. Another useful feature is to save and revisit 
certain combinations of widgets. We can also go further by allowing 
users to export the visualization spec along with the widgets to be 
shared with other users, similar to Bespoke [53]. 

7 RELATED WORK 
Visualization authoring tools. Modern visualization author-

ing tools [6, 10, 31, 45, 46] and grammars [5, 47] are built around 
the grammar of graphics [56] and they greatly reduce the visual-
ization authoring e�orts by allowing users to specify high-level 
visualization intent via mapping of data �elds to visual properties. 
For example, users of Tableau or PowerBI can easily drag data �elds 
and drop into encoding shelves of visual properties to specify the 
mapping, and users of Vega-Lite can provide mappings concisely as 
a JSON object. Then, based on high-level speci�cation, these tools 
automatically provide “smart defaults” to �ll low-level visualiza-
tion properties (e.g., stroke with, spacing of bars) and compiles the 
visualization spec to low-level visualization grammars like D3 [4] 
for rendering. While such designs reduce the initial visualization 
authoring complexity, visualization editing, and re�nement remain 
challenging as the user needs to unbox high-level grammar and 
navigate through the large space of editing options to perform 
the edits. D���V�� is designed to address the visualization editing 
challenge, which complements the strengths of existing authoring 
systems. We envision that D���V�� can be combined with existing 
tools in a way that users start with a high-level speci�cation to 
describe the visualization intent and then utilize dynamic widgets 
to perform subsequent edits to re�ne the chart. 

Natural language interfaces for visualization (V-NLIs). Nat-
ural language interfaces have been extensively adopted to improve 
the usability of visualization systems [49]. Even commercial GUI-
based tools like Tableau [36], Microsoft Power BI [12], and Google 
Spreadsheets [21] automatically translate natural language queries 
to data queries and present query results with visualizations. How-
ever, these systems limit natural language interactions to data 
queries and corresponding standard charts. 

The rapid development of Natural Language Processing (NLP) 
techniques [14, 58] has provided great opportunities to explore a 
natural language-based interaction for data visualization. There has 
been active research in adopting Natural Language Interfaces to 
improve the usability of visualization systems [21, 27, 48, 49, 52, 59]. 
With the help of advanced NLP-toolkits [2, 3, 9, 32, 35], a surge of 
visualization-oriented Natural Language Interfaces (V-NLIs) have 
emerged. V-NLI-based authoring systems accept the user’s nat-
ural language queries as input and output appropriate visualiza-
tions. Researchers have explored multiple techniques ranging from 
heuristics-based approaches to end-to-end learning approaches. 

Heuristic-based approaches explore properties of data in gener-
ating a space of potential visualizations [57], ranking these space 
of visualizations based on quality attributes [34, 37] and presenting 
them to the user. Further works have considered a task decom-
position approach, where the user queries are decomposed into 
multiple tasks, which are then solved individually and then aggre-
gated to yield the �nal visualization [16, 38, 55]. Finally, end-to-end 
learning-based approaches seek to learn mappings from data di-
rectly to visualizations [23]. More recently, with the advancements 
in Large Language Models (LLMs), systems like Lida [22] have 
found great success in leveraging patterns learned by LLMs from 
massive language and code datasets to create visualizations from 
natural language commands. LLMs preclude the requirement of ap-
plying heuristics, or training of custom models paired with custom 
training and data. As an extension, many V-NLI authoring tools 
also support visualization editing, with natural language as the 
primary modality. 

Customizable and dynamic user interfaces. Prior research 
in domains such as accessibility and ubiquitous computing has 
worked on systems that automatically generate UIs. SUPPLE [25] 
and SUPPLE++ [26] generate custom UIs for users to accommo-
date their motor and vision capabilities based on user-provided 
speci�cations and activity traces. Projects such as UNIFORM [40] 
and the Personal Universal Controller (PUC) [39] generate cus-
tom UIs for appliances such as media consoles and printers that 
are customized for each individual’s preferences and interaction 
history. Huddle [41] built atop PUC generates UIs to coordinate 
multiple home electronic appliances. Mavo [54] allows users to 
create interactive HTML pages without the need for programming 
by just adding special HTML attributes and also provides di�erent 
editing widgets based on the type of attributes. D���V�� shares 
these systems’ goals of creating specialized UI tailored to individual 
users’ intent. 

More recent work on Dynamic interfaces follows a “relaxation” 
method to create generalized UI widgets. The relaxation method 
involves creating UI widgets to directly manipulate variables in 
a function or query. Bespoke [53] synthesizes custom GUIs for 
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command-line applications by using user demonstrations. They 
employ rule-based heuristics that infer a semantic type for parame-
ters in bash commands to create a dynamic widget for editing the 
parameter. Similarly, Heer et al. [28] generates dynamic UI using 
query relaxing that enables the users to generalize their selection. 
A suite of work named precision interfaces [17, 19, 63] uses SQL 
queries as a proxy to generate interactive widgets from a sequence 
of input queries. The latest iteration, NL2Interface [18] generates 
SQL queries from NL commands and creates a generalized UI to 
edit the parameters/variables in the SQL query. BOLT [51] and 
EVIZA [48] generate ambiguity widgets that provide a simple UI 
for manipulating values for ambiguous inferred variables. e.g., for 
the NL command “largest earthquakes in California”, the threshold 
for classifying earthquakes as large is ambiguous. However, in both 
BOLT and EVIZA, natural language commands are restricted by 
a pre-de�ned grammar. These tools highlight the importance of 
complementary GUI tools that accompany NL interfaces. D���V�� 
builds on these systems, and uses an LLM to synthesize dynamic 
widgets that can enable direct manipulation of Visualization prop-
erties. Using LLMs to generate dynamic widgets gives us three 
distinct advantages: 

(1) By providing an accurate representation of the user’s context 
to the LLMs, D���V�� is less sensitive to errors or ambigui-
ties in natural language commands provided by the user. 

(2) We do not have a �xed set of rules, or heuristics, or rely on 
query relaxation. Instead of synthesizing a UI that allows 
users to edit just one variable, LLMs can synthesize widgets 
that can even capture complex relations like manipulating 
multiple properties at once. 

(3) Unlike previous systems, we do not restrict the space or the 
kinds of UI that can be generated. As LLMs become more 
powerful, this can enable the synthesis of complex interfaces 
beyond just the traditional HTML Input elements. 

Multi-modal user interfaces. Multi-modal interaction tech-
niques have the advantage of letting users better convey their intent 
in multiple ways reducing the overall e�ort. Pumice [30] allows 
users to use natural language to describe programming tasks in 
end-user development scenarios and then re�ne intent by providing 
examples to complement NL’s ambiguous nature. DIY Assistant [24] 
lets users combine NL and programming speci�cations to create 
personal assistants. Lee et al. [29] enables better sense-making with 
visual query systems with the help of sketching. ShapeSearch [50] 
lets users use query shapes using both NL and regular expressions 
— greatly improving the expressiveness of shape search queries. 
Tools like PanaromicData [61], and Vizdom [20] allow users to use 
pen and touch to directly perform data aggregation and analytics 
respectively on a digital whiteboard. D���V�� builds on the idea of 
enabling multiple modalities of interaction. D���V�� leverages both 
NL-based interaction to reduce the gulf of execution and UI-based 
interaction to enhance interactivity. In the future, D���V�� can 
further combine pen-and-touch for direct control of visual elements 
on canvas as well as sketching to demonstrate editing e�ects. 

8 CONCLUSION 
In this paper, we introduce D���V��, which blends natural lan-
guage and dynamically synthesized UI widgets to ease the gulf 

of execution and enhance interactivity. Given a visualization edit 
command or a widget creation command, D���V�� synthesizes a UI 
widget that the user can interact with to perform visualization edits. 
Our study with 24 participants shows that participants preferred 
D���V�� over the NLI-only interface citing ease of further edits 
and editing con�dence due to immediate visual feedback. 
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