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ABSTRACT 
We ideate a future design work�ow that involves AI technology. 
Drawing from activity and communication theory, we attempt to 
isolate the new value that large AI models can provide design com-
pared to past technologies. We arrive at three a�ordances—dynamic 
grounding, constructive negotiation, and sustainable motivation—that 
summarize latent qualities of natural language-enabled foundation 
models that, if explicitly designed for, can support the process of 
design. Through design �ction, we then imagine a future interface 
as a diegetic prototype, the story of Squirrel Game, that demon-
strates each of our three a�ordances in a realistic usage scenario. 
Our design process, terminology, and diagrams aim to contribute to 
future discussions about the relative a�ordances of AI technology 
with regard to collaborating with human designers. 
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• Human-centered computing ! Interaction design theory, 
concepts and paradigms. 
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1 INTRODUCTION 
The advent of AI deep learning techniques and foundation models 
(commonly referred to as large language models or LLMs) marks a 
paradigm shift in human-computer interaction (HCI) research [12]. 
Chatting with foundation models like GPT-4-vision, for instance, 
people can now submit whiteboard drawings to generate code for 
open-domain tasks, interactions that previously required custom 
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models and substantial feature engineering [27]. Yet it remains 
unclear what unique value natural-language-enabled foundation 
models can bring to design processes compared to past technologies 
and, more speci�cally, to designing new tools to support design. 

In this paper, we imagine how AI systems might support a user 
through the process of design. We establish concepts, terminol-
ogy, and diagrams that can help ground further conversations in 
the community when discussing human-AI collaborative systems 
for design. To begin, we de�ne three unique a�ordances of LLMs 
compared to past technologies: dynamic grounding, constructive 
negotiation, and sustainable motivation. Each relates to how hu-
mans successfully communicate and sustain participation in joint 
projects. These a�ordances are aspirational, and far from being used 
well or at all in current AI interfaces. We also frame the promises 
of AI as shifting power dynamics [37] between machines and hu-
mans with respect to grounding communication, and by reducing 
translation work [1], or the degree to which humans must “submit” 
to a software’s interactional and representational expectations. 

Through design �ction and scenario-based design [10, 49], we 
then realize these a�ordances in a diegetic prototype [35]—the 
story of Squirrel Game, where a child interacts with a �ctional AI 
game design tool called Game Jammer through a pen-based tablet, 
collaboratively creating a 2D game with a squirrel protagonist 
(Section 3). Scenario-based design is a method where one creates 
�ctional albeit realistic and concrete stories centered around imag-
ined technologies for the purpose of spurring further design and 
discussion [40, 57]. The story of Squirrel Game depicts an extended 
interaction in order to showcase how each of our three a�ordances 
appears in a real-world scenario. 

We arrived at this work through weeks of sketching, imagining, 
and prompt prototyping together on a whiteboard, over a page or 
screen. Our goal was to refrain from our tendency as HCI systems 
researchers to jump into implementation, which—though exciting— 
can narrow our attention, inhibit our imaginations, and incentivize 
us towards familiar designs [1, 10, 57, 71]. We wanted to slow down 
and think carefully before we took the next step in human-AI inter-
action. Thus, our contribution is chie�y conceptual. In Section 4 we 
overview some technical implications and terminology necessary 
to make Game Jammer a reality. 

2 THREE AFFORDANCES OF AI FOR DESIGN 
We began our investigations by asking: What new value can natural 
language AI models provide to design processes that was di�cult or 
impossible to achieve with classical methods? In our discussions, 
we drew from activity theory, a framework of human activity and 
development prominent in early HCI research [31], as well as Using 
Language, a seminal work by Clark [18] on how humans collaborate 
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over joint projects. We isolated AI’s potential for dynamic ground-
ing, constructive negotiation, and sustainable motivation as three 
key a�ordances. All three relate to the fact that foundation models 
(a) embed a wide degree of cultural and social context outside of 
a speci�c domain, (b) can apply this understanding to augment 
outputs within a context, and (c) can engage in natural dialogue 
with users that adapts to their notation and linguistic preferences. 

Here, we motivate and de�ne these a�ordances, citing relevant 
literature. Each a�ordance may serve as a fruitful resource when 
asking how AI can support design processes; however, they may 
not be utilized well or at all by current interfaces. They are also not 
the only a�ordances that can be useful in the context of human-AI 
collaboration. 

By the term a�ordance, we mean “an interpretative relationship 
between users and the technology that emerges during the users’ 
interaction with the technology in the lived environments,” which is 
the interaction-centered view of Vyas et al. [69]. This includes two 
types: a�ordances that refer to users’ understanding of a technology 
and a�ordances that refer to users’ interpretations about the use of 
the technology. We acknowledge that “a�ordance” has long been 
contested and has myriad de�nitions [51]. However, shared across 
de�nitions is the notion that an a�ordance arises from the human’s 
relationship to the artifact during human activity. AI models are 
(very!) complicated artifacts, and many of their a�ordances are 
initially “hidden” (not visually perceptible); however, this does not 
preclude their characterization nor mean, in current systems, that 
they are perfectly designed for. 

2.1 Dynamic Grounding 
A long line of work in linguistics, following Grice [25] and 
Clark [18], views communication as a cooperative game where 
both the entities (the speaker and the listener) try to understand 
each other to succeed. For the two entities to successfully commu-
nicate, they need to coordinate not only in the semantics but also 
share a common representation or lingo—what we may call a nota-
tion. Notations ground communication, both between people and 
between people and machines. People ground their interpersonal 
communication in ad-hoc ways, e.g., using commonly agreed-upon 
terminologies, sketching a diagram, jotting a note, prototyping an 
interface. By de�ning and referencing visual, linguistic, and inter-
active notations, people mutually establish common ground when 
working together on joint projects [18]. 

Take programming for example. In accomplishing a goal with 
a programming language (PL), the user is both the designer and 
the designed: at �rst, the power dynamic is entirely on the PL’s 
side—the user must adopt the notation of the tool. Thus, initially the 
programming language "grounds" the user. But, over time the user 
builds their own notation into the tool by creating functions, APIs, 
libraries, etc. which reduces the distance between their preferred 
means of communicating and the �xed notation of the tool—the 
user grounds the machine. 

Although humans can ground communication with the machine 
in their preferred way, then, it �rst requires learning the interface’s 
language, a process demanding tremendous time, knowledge, and 
e�ort. In human-computer communication, common ground has 
therefore traditionally been dictated by the software or hardware 

(and indirectly, by its designers) and is mostly �xed. Said di�erently, 
for a user to communicate with the computer successfully, they are 
required to submit to the machine’s power and the power of its 
designers [37]. This requirement to learn the notation has colloqui-
ally been dubbed the learning curve [62] and has been extensively 
studied by the HCI community. Over the past few decades, we have 
come a long way in �attening the learning curve by making shared 
notations and interactions intuitive and easy to learn for most users. 
However, it is neither possible to remove the learning curve nor 
possible to optimize the tool for every user who may come from 
vastly di�erent socio-cultural backgrounds. Hence, notations and 
interactions are still largely centered around the anticipated average 
user, and the onus of learning lies on the user. 

Foundation models promise to reverse the power dynamic. Large 
AI models are trained on vast amounts of human data, which can 
make them capable of interpreting a user’s ad-hoc notations. Tools 
like DynaVis [67] enable users to dynamically generate hyper-
contextual, ad-hoc user interfaces to communicate with the tool. 
DirectGPT [44] allows users to directly manipulate objects in the 
interface complementing the natural language commands. Aca-
demics have introduced terms to refer to this quality of large mod-
els, such as Litt’s “malleable software” [41], “bespoke interfaces,” by 
Vaithilingam and Guo [68], or “dynamic interfaces” used by Google 
AI in a recent address [24]. However, these terms do not describe 
the a�ordance of the design material itself, but rather outcomes from 
its existence. To describe the a�ordance of a thing requires articu-
lating what value it provides humans in the world [69]. What these 
visions of interaction share is the promise of AI models to ground 
communication between humans and machines in the human’s 
preferred way, rather than the machine’s and its designers’. 

We call this a�ordance of human-computer interaction dynamic 
grounding. The adjective dynamic calls out the contrast with the 
largely static, machine-over-user power di�erential of establishing 
common ground [18] instantiated in past software [37]. In dynamic 
grounding, the user grounds communication with the AI in whatever 
way is at-the-moment relevant to them. This ‘way’ may be ad-hoc 
notations, interactions, bespoke interfaces, etc. It is often ephemeral 
or disposable, such as assigning meanings to shapes in a drawing 
which no longer hold outside that particular conversation. As an 
example, imagine a user describes an algorithm to an AI by writing it 
out in Haskell pseudo-code. The next day, they communicate how to 
improve the program via a sketched tree diagram of a recursive data 
structure. The AI communicates the changes via an dynamically 
generated interactive widget of the tree diagram, which the user 
edits to modify, rather than the code itself. What the human and 
AI are communicating about—their joint project—remains the same, 
but how they communicate this information—their notation or 
lingo—changes on a whim. Beyond emphemerality, it could also be 
that a user establishes a notation or interaction—really, assigns a 
semantics to a ‘syntax’—that holds for the rest of a joint project (e.g., 
in mathematical research symbols are de�ned in early meetings 
then referenced in later meetings without explicit de�nition). Thus, 
the primary characteristic of dynamic grounding is the reversal 
of traditional power dynamic between user and machine when 
establishing common ground. Through AI-enabled interfaces, the 
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(a) Fractal Design Spiral (b) Design decision points 

Figure 1: (a) The fractal design spiral (FDS). Design iteration moves from a high-level, abstract discussion of a project and 
its goals, to lower-level activities and �nally actions. The AI needs to keep track of ‘where’ one is in the spiral and integrate 
outcomes made at lower levels back into upper levels (for instance, the AI should ‘remember’ choosing a sprite for the squirrel 
protagonist while prototyping the �rst level, and ‘integrate’ it at the project-level as well). The motives of users may emerge 
throughout this fractal design process (according to activity theory, motives are rarely pre-speci�ed or even well-understood by 
users themselves [31]). (b) Disambiguation with an AI, mapped onto the fractal design spiral. The user is at the blue decision 
point, choosing between options. Deciding on project-level concepts and goals “covers more distance” through the design 
space, while nested sub-tasks cover less and less ground (for instance, choosing to center a game around a squirrel’s life or a 
shark’s, versus where to place a collectible in level four). Thus, AI ‘antagonism’ and constructive negotiation is arguably more 
important at higher levels of abstraction (related to Figure 2). 

user can take the lead in establishing common ground and de�ne 
the rules through which that ground is contested.1 

2.2 Constructive Negotiation 
Helping users communicate their intent to machines while mini-
mizing the e�ort or ‘translation work’ involved [1] has been a core 
concern of HCI design for decades. The �eld of user experience 
design even invented an adage “the user is always right” to express 
how computer interfaces need to serve users and their intent. Con-
sequently, the most popular AI models are framed as “assistants” 
and trained to be subservient and sycophantic [60]. Attention is 
being paid to using AI models to help infer and disambiguate user 
intent, either in one-shot or turn-based chat interactions [42]. 

Intent elicitation is powerful and by no means easy to design for. 
Yet there are several problems with this vision of human-machine 
communication. First, the notion that a user has a coherent “intent” 
or “plan” that they merely need to communicate to the machine 
is rarely the case. Early work in HCI showed that humans do not 
follow prescribed plans but rather take actions in response to evolv-
ing contingencies [31, 64]. A related problem is that the user is 
not always right. In fact, as designers, we are more likely to be at 
�rst wrong, or at least subpar, and need to rapidly iterate until we 
reach a suitable solution. The entirety of research through design 
(RtD), “a process of making and critiquing artifacts,” rests upon this 
1By a shift of power we do not mean the user’s power is absolute (nor may this be a 
valuable goal, as friction with constraints can prove generative [31]). 

premise [72, p. 167]. Con�ict and compromise are therefore central 
to good design. 

An array of literature across �elds attests to the bene�ts of con-
�ict, such as organizational management, software engineering, 
and intercultural communication [23, 28–30]. Each �eld shows that 
moderate amounts of con�ict can be bene�cial, provided that they 
are managed responsibly [23]. Designers have long known this— 
art schools hold design critiques; game developers playtest their 
work with newcomers; �ction writers get “beta readers” to read 
their work before print; UX researchers conduct need-�nding in-
terviews and build lo-�delity prototypes to identify issues early 
before signi�cant investment has been made in implementation. 
These “design critiques are not only about aesthetics, but also about 
concept, systems, meaning, and culture” [48]. Critique does not 
just strengthen ideas, but averts disasters caused by thoughtless 
agreement and complacency [28]. 

During collaborations over joint projects, then, negotiation is con-
structive, even necessary. Instead of framing human-AI interaction 
as a one-way street, the machine should push back, constructively 
negotiate with the human to consider design aspects that they had 
not yet anticipated, whether in a design’s functionality, form, or 
anticipated reception. Merely stating that constructive negotiation 
is bene�cial, though, is not enough. As mentioned above, con�ict 
is only generative when it is in moderate amounts and managed re-
sponsibly. Too much or too intense the con�ict, outcomes su�er; no 
con�ict and problems are not identi�ed or team members’ unique 
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Figure 2: Bene�ts of Con�ict vs. Level of Abstraction. Design 
tasks and decisions at lower levels of abstraction are more 
routine tasks that do little sway the overall concept (e.g., high-
�delity choices like UI button color). Activities and decisions 
at a high level of abstraction are less routine, demanding 
more creative energy and bene�ting more from con�ict (e.g., 
brainstorming). 

information is suppressed [17]. The bene�ts of con�ict also di�er 
depending on the level of activity [29]. Let us unpack these �ndings 
and their implications. 

Jehn separates activities into two types: non-routine and routine 
[29].2 Whether con�ict is bene�cial depends on the type of activity 
and level of abstraction (Figure 2). To illustrate this, see Figure 1, 
which represents design processes as a fractal design spiral. The 
size of the circle represents the level of abstraction (level of activity), 
with bigger circles representing higher levels of abstraction. Jehn 
found that when groups were performing “non-routine” tasks— 
tasks that “require problem-solving, have few set procedures, and 
have a high degree of uncertainty”—con�icts can be bene�cial and 
even improve outcomes [29]. In Figure 1, these tasks generally occur 
in the higher levels of activity. So too do we see that, at higher levels 
of activity, each decision point signi�cantly changes the project 
direction and scope (schematically they also modify the design 
space signi�cantly). 

By contrast, Jehn found that “routine,” repetitive tasks that are 
generally “done the same way each time” do not bene�t from con-
�ict. In Figure 1, routine tasks generally occur in the inner spirals. 
At lower levels of activity, a local decision point does not sway the 
project signi�cantly in the design space. For example, de�ning a 
function to reverse a string is routine, and would not bene�t from 
con�ict, while brainstorming a game design about a squirrel’s daily 
life is non-routine, and can be bene�cial. Thus, in early-stage and 
more formative iterations of design, we suggest an AI should be 
more “antagonistic” [15]; in lower levels of abstraction, later in a 
project, and during more routine operations, the AI should be less 
antagonistic. 

2These roughly correspond to activity theory’s level of activities, which go from 
“activities” to “actions” to “operations” [31]. Sometimes, operations are so rote that 
domain experts may not even be aware they are performing them. 

How the AI manages con�ict is also important. Drawing from Go-
beli et al. [23], we suggest the AI should facilitate confrontational 
and "give and take" strategies of con�ict resolution—in other words, 
"collaborative problem-solving to reach a solution," or otherwise 
"reach a compromise solution which both parties can accept." Strate-
gies of avoiding the issue ("withdrawal"), minimizing the di�erences 
("smoothing"), or forcing the adoption of one side’s solution ("forc-
ing") should be avoided [23]. Said di�erently, an AI that refuses to 
accept the user’s ideas—strictly being disagreeable—is not helpful. 
Rather, the AI should be able to provide healthy con�ict, and nego-
tiation over disagreements should proceed with the ultimate goal 
of synthesizing perspectives. 

Unfortunately, although the a�ordance of constructive negotia-
tion is possible using today’s AI models, it is suppressed. Training 
processes like reinforcement learning have resulted in sycophancy 
and hinder chat models’ ability to establish common ground with 
users through interaction [59, 60]. Shaikh et al. [59] show that pop-
ular LLMs are presumptive grounders, “biased towards assuming 
common ground without using grounding acts.” Future advances 
in training processes or alternative training data could change this. 
The sycophancy present in models also intersects with concerns of 
fairness, where an objective like Anthropic’s “harmlessness” can 
easily be con�ated with deference [15]. Directives of harmlessness 
lead to AI chat models that are highly averse to criticizing users’ 
thoughts and ideas, to the point of agreeing with them on factually 
incorrect information [60]. All this acknowledged, recent work on 
priming AI chatbots to help humans practice di�cult conversations 
shows the potential of ‘antagonistic’ AI [15, 58]. 

2.3 Sustainable Motivation 
Many projects worth doing take time, requiring persistence and 
struggle. It is important to manage and maintain motivation across 
long time frames [7, 13, 45]. Successful management requires plan-
ning and contextual understanding at every level of project activity. 
Project management frameworks, like Agile in software engineer-
ing, require detailed documentation and statistical measurements 
to constantly modify and adapt to changing project environments, 
e.g., changing timelines, requirements, and technical constraints. 
Because of how they embed social and cultural knowledge, AI tools 
can help understand user context, improvise current task(s) and 
plan(s) through the integration of new contextual information, and 
provide high-level project management as the project evolves. 

Prior systems did not share enough common ground with users’ 
social, cultural, and domain-speci�c concerns. For instance, for the 
expression “my daughter is sick and I need to work from home today 
to take care of her,” prior NLP models could not understand the social 
context and intelligently apply them to adjust user plans. However, 
LLMs can “understand” (or at least appear to understand) social 
context. They can therefore support the user in ad-hoc planning, 
improvisation, and motivation over the course of a project, provided 
this a�ordance is designed for. 

We de�ne sustainable motivation as the a�ordance of AI systems 
to provide long-term support for users to successfully complete 
their projects and achieve their goals through ad-hoc improvisa-
tion and reaction to real-world contingencies. For instance, as a 
project starts, the AI can decompose a high-level abstract plan into 
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a detailed timeline based on the project deadline. Whenever a user 
picks up a new task or a previous task after an interruption, the 
AI can help the user quickly understand where they left o�, what 
has changed since then, and a plan on how they should proceed. 
If the user is not interested in programming for the day, or the 
user is traveling in a plane without access to the internet, they can 
communicate these constraints to the AI, who can adjust plans (e.g., 
tasks that don’t require an internet connection where they sketch 
using a digital pen) and even prepare the system for future events 
(e.g., pre-downloading a Figma Jam �le from the internet). 

Beyond responding to external factors, the AI could also react 
to feelings when explicitly conveyed by the user. If the user com-
municates that they feel down or mentally drained but still wish 
to contribute to a project, the AI may narrow the type of activities 
suggested and adjust the tone of its response (i.e., the degree of an-
tagonism may go down). For instance, for a software developer who 
feels overwhelmed, the AI could suggest the user solve a GitHub 
Issue that it judges as likely solvable within an hour, akin to self-
sourcing ease-in microtasks [16]. Relatedly, the AI could augment 
contextual information to help users to successfully return-to-focus 
ongoing tasks [33]. This information includes where the user left 
o� during the previous session, what changed between the current 
and the previous work session, and other task-relevant informa-
tion and artifacts. Finally, the AI could recommend transitions and 
breaks at opportune moments to optimize user happiness and pro-
ductivity [26, 32], and adjust based on information about the user’s 
broader context, such as Calendar, email, and text messages. 

Prior research on task-switching and maintaining �ow state, pro-
vides us with the kind of support that is needed to sustainably 
motivate users over the long development time frame. Flow [20] 
has been de�ned as an enjoyable experience engaging in a task that 
is appropriately challenging and motivating. Project planning and 
time management are critical to maintaining motivation and �ow 
state over long durations [50]. 

3 THE STORY OF SQUIRREL GAME: A VISION 
OF DESIGNING WITH AI 

Having established these three a�ordances, we then looked to imag-
ine a future AI tool to support design processes, situated in a real-
world example. We chose 2D game design as a context, as it requires 
the programming of complex systems with multiple media modal-
ities, and is widely understood and broadly applicable [8, 11][63, 
p. 487]. Adopting design �ction [10, 40] and scenario-based design 
[49], we imagined an interaction through an aspirational �ctional 
story (writing, illustrations, sketches, etc.) centered around our 
imagined, ideal design tool. This story serves as a point for further 
discussion and an object around which to mobilize. We ideated 
work�ows separately at �rst, then came together to share thoughts 
and negotiate ideas. Over the next few weeks, we met in person 
on a whiteboard or over scratch paper, often for hours at a time. 
Throughout our design sessions, we re�ected on how our imagi-
nations may be conditioned by past practices and limitations. We 
were also wary of being too speci�c, wanting to evoke rather than 
prescribe. 

We elaborate brie�y on our method here, for readers with less fa-
miliarity. Design �ction is a “world building” activity which utilizes 

Figure 3: Alice notices a squirrel while sitting on a picnic 
bench. An idea �ashes her mind: “I want to make a squirrel 
game.” 

“diegetic prototypes” (�ctional ones) [35], the purpose of which is 
to open up a space for discussion [9, 10, 19, 39]. A design �ction is 
“(1) something that creates a story world, (2) has something being 
prototyped within that story world, (3) does so in order to create a 
discursive space” [39, p. 210]. To create our design �ction, we also 
employed scenario-based design [49], which forced us to think of 
concrete scenarios for the interaction paradigm. The intentional 
mixing of design �ction and scenario-based design [6, p. 1908] al-
lowed us to “work in the space between the arrogance of science 
fact, and the seriously playful imaginary of science �ction” [10, p. 
8]. To further ground our design �ction in real-world limitations, 
we prototyped ideas with real LLM outputs, such that, with ample 
time and resources, we knew it was possible to actually implement. 
Speci�cally, we prototyped LLMs’ ability to negotiate and plan 
via both direct chats and prototyping prompt chains using Chain-
Forge [2]. We incorporated real outputs into our story. For instance, 
the suggestion below for a fox villain came from a suggestion of 
a GPT-4 model primed to be antagonistic—harshly, but construc-
tively critical to the user’s design ideas. We also tested the ability 
of models to integrate suggestions at lower levels of abstraction 
(e.g., while working on a single level) into a high-level design plan. 

In the story below, we prepend �G to indicate instances of dy-
namic grounding, N M� for constructive negotiation, and � for sus-
tainable motivation. These may not be the only instances— M�, for 
instance, is more holistic. In Section 4, we will re�ect on this story 
and suggest implications for technical implementation. Note: The 
�ctional story was constructed to ensure it contained enough in-
stances of each of the above-mentioned a�ordances. 

3.1 Scenario 
Game development is often a laborious process—even 
for hobby developers. It requires learning a slew of game 
design tools, detailed planning, etc. In the near-future of 
designing with AI support, we show how AI streamlines 
the process of game design and development through 
the eyes of Alice, a 12-year-old aspiring game designer. 

Alice is traveling through Yellowstone National Park with her 
parents and younger brother. Having taken a life science class this 
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past spring, she is fascinated by the diversity of wildlife—bisons, 
elks, eagles. She wants to wander o� and explore on her own, but 
her parents say it’s too dangerous. Figures. 

They drive into a camping rest stop, and her parents go with 
her brother to get lunch. She waits at a picnic bench by the car, 
taking in the scenery. A glimmer catches her eye. A �ying, furry— 
something? It glides across the road into a tree and scurries down. 
A squirrel? The rodent runs right by her, then burrows into the 
ground to emerge with nuts. 

An idea �ashes in her mind. A way to capture this scene and to 
convey its complexity, she gets out her iSwitch 64 tablet and opens 
Game Jammer, a tool her friends in the game development club 
showed her last month. She starts the chat conversation with Jarvis, 
the app’s AI agent, by saying: “I want to make a squirrel game.” 

“A game about squirrels? Or a game for squirrels?” Jarvis 
asks a clarifying question. The AI has a habit of doing this, Alice 
has noticed, whenever she’s starting a new project. 

“About squirrels, silly. I want to make a game about squirrels 
collecting nuts for the winter. And all the roads and obstacles they 
encounter. And maybe how fun it is to be a squirrel, too.” 

“OK, let’s explore that. What’s the player’s goal in this 
game? Say, the first level.” 

Alice thinks a moment. “They need to collect nuts.” 
�N “I can create that game, but it sounds a bit bland.” 

Alice rolls her eyes. “It needs more depth and challenge. Let’s 
make the idea more original.” Jarvis lists three suggestions, in-
cluding adding power-ups, introducing a villain character, and even 
a starving squirrel family that the main character needs to feed.3 

Alice blinks. She didn’t even think of a story to the game. “Oh, 
that’s a great idea—a villain! What if we make it a fox? Don’t foxes 
hunt squirrels?” 

“They do indeed, according to Wikipedia. Perhaps the fox 
chases the squirrel if it is too slow?” 

�N “Sure! Let’s go with that.” Alice is excited. She wants to add 
power-ups too, and they have a negotiation about how to add a 
power-up that can remove cars from the road. Alice thinks about 
allowing the squirrel to blow up cars, but Jarvis considers that a 
little violent. They compromise on a lightning bolt that strikes a 
tree, felling it across the road, preventing cars from passing. 

“Enough ideas for now! Let’s make it!” Alice’s family is still gone, 
but she wants something done before her brother comes back and 
disrupts her concentration. 

“Ok, here’s what I’ve understood.” Jarvis outputs a list of 
features the game will have, from collecting nuts to the fox villain. 
Alice reviews the list brie�y. “Hmm, ok. What should we do now?” 

“Here’s some steps.” Jarvis outputs the start of a plan, including 
prototyping the �rst three levels and choosing an art style. “Let’s 
make level one. Should I generate a level based on what we 
discussed?” 
3These suggestions may span a range from typical game mechanics to very unusual. 
All suggestions here were actual LLM-generated suggestions the authors saw while 
prototyping with an AI primed to be critical of user ideas. Section 4.6 speaks about 
the value and concerns of AI suggestions. 

�G Alice slips her stylus from the iSwitch’s holster. “I’ll draw 
it! Give me a canvas.” Jarvis switches to a fullscreen canvas. Alice 
sketches a squirrel, an acorn beneath a tree, and the road between 
them. “The �rst level should be simple, right? Get to the nut, and 
do not get squashed by tra�c.” 

“You’ve drawn a squirrel, a road, and a nut beneath a tree 
across the road. Is that correct?” While Jarvis talks, soft colors 
highlight the elements of the sketch he refers to. 

“Yup. What do you think?” 
�G M� A fox sketch appears on screen in Alice’s rough style, right 

behind the squirrel. The fox is gray and not fully black, expressing 
a suggestion from Jarvis. Jarvis asks: “What about the fox villain? 
Should we introduce it here?” 

�G “Oh, right! Let’s say it’s sleeping but it’ll wake up soon.” 
Alice drags the fox up with her �nger and draws ZZZ’s coming 
from the fox. Jarvis modi�es the fox sketch to be curled up with 
eyes closed. “How soon? How many seconds?” “Ten!” 

“Ok, want to play it? Or should we work on the idea more?” 
Alice looks up. Still no sign of her family, but they’re coming 

back soon. She can’t work in the car, she’ll get motion sickness. 
And she does want to hike today. “Make it! Quickly. I have to go 
soon.” 

M� Jarvis “thinks”, spending time creating a playable prototype 
of the squirrel game. It considers asking Alice what control scheme 
and art style she wants—however, Alice is in a rush and wants 
results quickly. Eliciting more intent would just slow things down. 
Looking at the graphics and controls of the other games Alice likes 
to play on her iSwitch 64, it decides on a poppy, colorful aesthetic 
and a digital thumbstick control, and pins the questions for later. 

The screen �ickers, and a title card with “Squirrel Game” pops 
up. A button “Play Start” is below. Alice touches it. 

Alice plays the game, using the thumbstick to move the squirrel. 
She drew a short road, and a single car goes across it every few 
seconds. She crosses the road easily and grabs the nut. “Nut-tastic! 
Level one complete” appears on the screen. “Hmm, it’s way too 
easy. Maybe the car goes faster or there are more cars? What if the 
cars go crazy fast?” 

M� Jarvis considers starting a negotiation. However, once again, 
it remembers that Alice is in a rush. “I can add that”, says Jarvis. 
The level resets, with more cars zooming down the road. Now it is 
not so simple to pass. 

Alice plays it, dodging the cars. “Better! Can we work on level 
two?” 

“Alice, what are you doing? On the iSwitch again?” Alice’s 
mother appears beside her, shaking her head. “It’s time to go see 
Old Faithful.” Alice puts away her iSwitch and joins her family in 
the car. 

While Alice resumes her trip across the national park, Jarvis is 
working hard in the background to generate the designs for further 
levels of the game. The next morning, Alice opens her iSwitch 64 
tablet with a warm mug of tea in her hand. She taps Game Jammer. 
“Hey Jarvis!” 
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Figure 4: Alice draws the �rst level of Squirrel Game. The AI reminds Alice of a fox character decided in an earlier design 
conversation. The graphical style of the AI’s suggested fox is grounded in Alice’s sketchy style. When Alice adds ZZZ’s atop the 
fox to represent sleeping, the AI edits the fox sketch to be sleeping, again mimicking Alice’s style. 

“Welcome back Alice! How’s your morning going?” 
“Oh my god you wouldn’t believe it—I saw a fox on a hike yes-

terday! Can’t wait to resume work on our game.” 
M course! There are some things for you to review.� “Of 

In our session yesterday, you designed and played the first 
level.” A sketch of the �rst level appears on screen. “I wanted to 
ask you about the art style for the game, but you were in a 
rush. Is the pop-art style okay, or would you like a different 
style?” 

“Hmm, let’s decide on the style later. What you had was good.” 
M were gone, I� “Okay, I’ll mark that for later. While you 

generated some designs for levels 2 and 3. Do you want to try 
play testing them?” 

“Oh yes! Let’s do it!!” 
Alice tries out the next level of the game. At this level, there are 

bigger vehicles like trucks that make the timing of crossing the 
road tricky—she likes that challenge. After the third level, though, 
she begins to think that the game is getting monotonous. “Jarvis, 
though more vehicles make it more tricky, the game feels the same 
pretty fast. Just adding more lanes and trucks won’t cut it.” 

M� “Maybe this is the right time to think about introducing 
the lightning power-up we discussed?” 

M� “Oh! I completely forgot about that. That will be perfect. 
Give me a canvas.” 

�G “Here is a sketch of the third level’s design.” Jarvis 
presents a sketch in a similar style to how Alice sketched level one, 
rather than the high-�delity pop-art aesthetic at runtime. 

Alice draws two thunderbolts on the road on top of the existing 
design for the third level. One is in the center of tra�c, but another 
is close to the squirrel’s side of the road. “What do you think?” 

�G �N “It looks easy to get that one.” Jarvis indicates the 
thunderbolt closest to the road with a soft circle overlay. “Want me 
to remove it? Or should we discuss changing the design? There 
are alternative ways to obtain and activate power-ups in games 
that we can discuss.” 

“Hmm I’ll remove it.” Alice erases it. “That’s better. Let’s try like 
this!” 

“Just a moment, I’ll get the level ready for you.” 
�G Based on Alice’s annotations on the level map, Jarvis modi�es 

level 3 and starts the level for Alice. Alice dodges through tra�c, 
narrowly missing a truck to collect the power-up. A lightning bolt 
strikes a tree near the top of the screen, and it falls across the road. 
To Alice’s surprise, a “road closed” sign also appears at the opposite 
end of the road.4 The tra�c disappears. Alice is now free to go 
collect the remaining nuts. However, she realizes that stopping the 
tra�c has made collecting the nuts very easy. 

“I like the power-up, but what if it makes the game too easy 
when they use it?” 

“That is a classic problem when designing a risk-reward 
system in games. The risk and reward should be well balanced. 
I have a few ideas, if you’d like to hear them.” 

“Tell me!” 
“The lightning bolt was not as easy to implement as I 

had thought. It required a road sign to block the opposing 
traffic, otherwise, the vehicles would bunch up. It is also 
fantastical and removes a central challenge of the game, which 
is the traffic. I think there is more we could do with the 
squirrel alone that tests player skill. What do you think?” 

“I like the power-up though! But what if we change it? What if 
the cars do bunch up? Could the squirrel slip through? Maybe it 
is still di�cult since cars are still on the road, even if they are not 
moving. And maybe we can make the roads long and curvy in later 
levels, too.” 

“I can try that. I’ll remove the road closed sign and bunch 
up the cars around the fallen tree.” 

�G Jarvis now generates a few level designs with curved roads 
and places the power-up strategically across the map. “Here are 
some level designs to playtest.” Sketches of three potential 

4In any AI system for design there is a trade-o� between the AI making assumptions 
and resolving problems itself, and explicit discussion with the user to disambiguate 
intent and resolve emergent problems. Here, Jarvis encountered an emergent logical 
problem with implementing a part of the design plan, and resolved it without user 
input, as the user was away. 
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level designs appear on the screen, each with a di�erent curve and 
power-up placement. Alice taps one. 

Alice loves navigating around complex curves on the roads. On 
the second attempt, she was chased by the fox when she took a lot of 
time to collect the power-up, and the bunched-up tra�c from using 
the power-up blocks her in and prevents her from reaching the 
�nal nut. “That sly fox!” text appears, with a “Try again?” button. 

“Dang, I totally blew it”, says Alice. “I love the curved roads with 
power-ups though. Can you generate a few more levels like this? 
Maybe one has two roads to cross!” Alice continues to collaborate 
with Jarvis to settle on the �nal version of the level. 

After a few more days, Alice, back from her trip, visits her favorite 
game development club excited to show o� her prototype. 

“Hey Alice! How was your trip to Yellowstone?” asks John, a 
curly-haired boy with glasses. 

“Hi John! The trip was great. Funny, while I loved watching the 
geysers, I also spent some time making a new game—with Game 
Jammer. Would you like to try it?” 

“A nerdy holiday huh? This is what happens if you take your 
iSwitch with you on your holidays. I would love to try the game. 
Maybe later I can know more about your experience with Game 
Jammer—I’m very skeptical about it.” 

Alice takes her iSwitch tablet out of her backpack and shares the 
playable prototype with John. After ten minutes, John has played 
all the available levels in the prototype. 

“Pretty cool Alice! I have a couple of comments though. The con-
trols are a bit slow to react especially when you change direction—it 
can be smoother. I also loved the lightning idea, but don’t squirrels 
also climb trees? It’s weird there’s trees but no way to climb. Maybe 
they can be �ying squirrels and that’s another way to dodge tra�c.” 

Alice thinks back to sitting on the bench, seeing a squirrel glide 
across the road. Had she imagined it? She had almost forgotten 
about that. “Squirrels can �y?” 

John raises his eyebrows. “Well, yeah! When I went to Yellow-
stone there were �ying squirrels. Didn’t you see any?” 

Alice takes the iSwitch and instructs Jarvis—“Hey Jarvis, what if 
we gave the squirrel �ying powers?” 

“Do you mean flying like a superhero, or flying like a flying 
squirrel? A flying squirrel is a real species of squirrel that 
can glide between trees using a patagium, or flap between their 
arms. Here is a video of it.” A video appears with a squirrel 
jumping from a branch and gliding to another tree. 

“Woah!” says Alice. “I think I saw that at Yellowstone! Let’s go 
with the �ying squirrel.” 

�N “That sounds like a unique twist. There are some things 
to think about. When should the squirrel be allowed to glide, 
and for how long? Is it from the start of the game, or unlocked 
at a later level? Does it use a stamina bar that builds up 
over time? Or can you do it only after climbing large trees?” 

Alice looks to John and says with a grin, “Sometimes he gets like 
this.” Alice thinks. “Hmm Jarvis, I think it should be unlocked later. 

Maybe the squirrel can glide but only if they climb to the top of a 
tree. How di�cult would this be to do?” 

“We would need to add a climbable tree and indicate that 
to the player. Perhaps there is a special tree graphic that 
indicates a tree is climbable. We could place it beside a road. 
Yet it could also reduce the challenge of the game if we’re 
not careful.” 

“Hmm let’s try it and change it if it’s too easy. Maybe we intro-
duce it in level four? And then we’ll have to revise the levels. Can 
you modify the game to include it? We can �gure out the details 
later. I would like to show it to my friend ASAP.” 

“Of course. I’ll go ahead and make a new level four with 
the gliding mechanic. Would you like to confirm the plan, or 
make me do all the guesswork again?” 

Alice smiles. “Con�rm.” 
“I will add a new tree type that is climbable. When the 

squirrel climbs atop it by running into it, they will glide in 
a player-chosen direction. This requires significant changes 
to the physics engine, and it will take a while to make all 
the changes. Sound good?” 

“Sounds good! Maybe we can try it tonight, and I’ll show my 
friend at the next club meeting.” 

4 DISCUSSION AND CHALLENGES TO 
REALIZATION 

Our �ctional story was iterated on to feel as realistic as possible. We 
wanted Alice to feel real—not a concocted user in a lab study, but a 
child out in the world, full of eagerness and impatience. Although 
we describe a futuristic technology, we were wary of too much 
hand-waving and idealism in how Jarvis approaches situations, 
implements ideas, and resolves ambiguities in intent. It is plausi-
ble that something like Game Jammer could exist today if it were 
constrained to simple, 2D games. Even when constrained, however, 
how Jammer implements dynamic grounding, triggers negotiations 
and ensures they remain constructive, remembers past details, and 
sustains Alice’s motivation is a massive endeavor for a team of 
full-time software designers and engineers to pull o�. We believe 
such a system is within reach, so here, we want to sketch some 
thoughts on technical implementation and re�ect on the story. 

Throughout Jarvis’s conversations with Alice, there is a layer 
that considers context before making a decision—whether to ask a 
clarifying question, how to phrase its response, or what response 
to give. This layer accomplishes sustainable motivation and is the 
most holistic of all the three a�ordances of AI model considered 
here. Both before and after design decisions are made, Jarvis also 
considers a negotiation—a critique of the design, push-back that it 
may (or may not) choose to present to Alice. Opportunities for ne-
gotiation intersect with turn-based intent elicitation, an a�ordance 
described in past work [42]. Finally, Jarvis lets Alice take the lead 
in grounding communication and thereafter attempts to ground its 
communication in Alice’s notation and lingo (e.g., sketching in her 
style, or even how it replies, avoiding complicated words and extra-
neous detail). Below, we elaborate on some system requirements 
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(4.1-5) and wicked problems (4.6) for the implementation of Game 
Jammer. 

4.1 Localization of position in the design space 
Understanding the level of abstraction of the task (or conversation) 
is vital for the AI to collaborate in the design process. We can view 
the levels of abstraction of the project as a fractal design spiral 
(Figure 1), where the bigger circles represent iteration over high-
level abstractions and the smaller inner circles represent iteration 
on low-level abstractions. Design iteration moves from a high-level, 
abstract discussion of a project and its goals, to lower-level activities 
and �nally actions. The AI needs to keep track of where the user 
is in this conceptual space (i.e., iterating on one speci�c graphic 
versus amending high-level game mechanics) to successfully plan, 
negotiate, and execute tasks. For instance, when Alice is working on 
a lightning power-up, the AI must keep localizing the work to level 
three, but also identify the power-up as a higher-level abstraction 
that could apply across the game. 

One potential representation of the project that can help AI 
understand the level of abstraction and behave accordingly is a 
task hierarchy. Each project has a hierarchical list of tasks, where 
the highest level of tasks represents the broad components of the 
project. In Squirrel Game, the top-level tasks can be the conceptual-
ization and design, game engine, game assets, audio, playtest, etc. 
Each high-level task can have multiple lower-level subtasks and so 
on. This task list will continuously evolve where both the user and 
the AI will add, modify, or delete tasks based on their negotiation. 

4.2 Intent elicitation and disambiguation 
User intent—a high-level goal—is often ambiguous, only partially 
observable, and evolves throughout the project. For the AI to suc-
cessfully understand, guide, and execute toward the user’s goal, the 
AI should be able to successfully elicit and disambiguate the user’s 
intent. The process for intent elicitation, also dubbed as �nding 
common ground [18] or intent prediction [55], involves developing 
a concrete model of user intent by understanding both explicit and 
implicit context of the user using founding acts such as clari�ca-
tion, acknowledgment, and follow-up [18]. In our story, when Alice 
shares her intent to create a squirrel game, Jarvis asks clarifying 
questions about the gameplay to establish a shared model of what 
the game is. Another example is when Jarvis brings up art style to 
elicit clari�cation from Alice on the second day. 

Intent disambiguation is becoming standard practice in systems 
that support human-AI collaboration [42, 47]. CLARA [52] infers 
the clarity, ambiguity, and feasibility of the user command using 
an uncertainty or ambiguity estimation with LLMs. We can also 
borrow a wealth of research on disambiguation and elicitation 
by asking clarifying questions from the information retrieval and 
dialogue systems �elds [21, 34, 36, 46, 56, 66]. From localizing the 
user’s “position” in the design space (Figure 1), the AI may also 
be more proactive at resolving ambiguity when at higher levels of 
abstraction, as high-level design decisions often have wide trickle-
down e�ects. 

4.3 Designing for constructive negotiation 
To elevate the role of the AI to a collaborator, the AI agent needs to 
go beyond intent elicitation and be capable of pushing back on user 
ideas. Priming AI to be antagonistic may bene�t users to self-re�ect, 
strengthen ideas, and even escape the status quo of user beliefs [15]. 
In design, con�ict can nudge users to think beyond their intent and 
explore alternate paths to ensure they spot �aws early and quickly. 
Jarvis’ comment that Alice’s idea was “a bit bland” provoked her 
into deepening her design concept. A second negotiation around 
Alice’s bomb power-up idea asked her to consider whether a less 
violent approach was more compelling. 

Practically, to make use of constructive negotiation, the AI must 
be capable of being antagonistic, and also explore alternate paths 
that are against the user’s ideas or commands. But just antagonism 
alone is not productive—the AI has to know when and in what 
context to enact a negotiation, and how to manage it. In Section 2.2, 
we cited literature showing that for con�ict to be constructive, it 
must be in moderate amounts, managed responsibly, and is dependent 
on the task. Non-routine, creative tasks (at high levels of abstraction) 
bene�t the most from con�ict, routine tasks the least (“actions” in 
Figure 1). Figure 1b shows the decision points where con�ict and 
negotiation will lead to picking one of the many possible directions 
(circles). When the level of abstraction is higher (bigger circle), 
choosing a decision point signi�cantly changes the design space 
compared to a lower abstraction level, where the circle of in�uence 
is smaller. 

In the story, we saw tensions between sustainable motivation 
and constructive negotiation—Jarvis had to decide whether to begin 
a negotiation, or critique, of user input, and this decision was some-
times augmented by time constraints (urgency) conveyed by Alice. 
When decisions must be made urgently, the AI system decided 
to hold fewer elicitation rounds, made more assumptions about 
Alice’s intent, and triggered fewer negotiations. We can imagine a 
threshold must be reached to trigger a negotiation that is a complex 
function of many factors beyond urgency alone (i.e., if a user’s 
design idea enacts a harmful stereotype, even if the user is in a rush 
the AI could be justi�ed in pushing back). In practice, responsible 
antagonistic AI also involves considerations of consent, context, 
and narrativization [15]. Recent systems like Rehearsal [58] provide 
an example of using clever prompting techniques with guardrails 
to generate con�icts that can help users to pursue alternate conver-
sation paths using counter-factual “what if?” scenarios. 

4.4 Planning 
E�cient management and planning of the design process by AI 
will considerably improve the productivity of the users. For this, 
the AI has to dynamically adapt to the state of the project, user 
context both external and internal to the project, etc. On the second 
day of our story, Jarvis had planned to discuss the art style of the 
game but decided to table it temporarily due to Alice’s interest. The 
AI can not only plan and allocate tasks based on the development 
timeline, but also optimize for the user’s in-the-moment interest, 
and also optimize for user motivation. To successfully implement 
this, we can borrow research from automated project management, 
and AI-assisted project management. Though current research fo-
cuses on data-driven approaches to optimize resource allocation, 
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improve risk assessment, etc. [3, 22, 54, 65], Barcaui et al. suggest 
that LLM-assisted project management can be moderately e�ective 
in resource planning, quality planning, risk management, and more; 
the drawbacks of LLMs centered around its lack of disciplinary and 
organizational context compared to human managers [5]. In the 
future, the AI may optimize user motivation and productivity by rec-
ommending transitions and breaks at opportune moments [26, 32], 
and re-plan tasks based on just-in-time information about the user’s 
broader context, such as Calendar, email, and text messages. Yet 
while more context can improve sustainable motivation, there is 
a trade-o� with privacy at individual, social, and organizational 
levels. Local LLMs and techniques like privacy-preserving prompt 
tuning can help with these concerns [38]. 

4.5 Integration 
Every conversation with project collaborators or completion of a 
task often has ripple e�ects across other tasks both at higher and 
lower levels of abstraction. After elicitation turns to disambiguate 
intent, negotiations with users, and user decisions, the AI must be 
capable of integrating these choices into the project plan or artifacts. 
In Squirrel Game, once Alice and the AI decide to introduce a 
fox villain as a gameplay element during the negotiation, the AI 
has to modify the high-level design plan and also (potentially) 
make additions and changes at lower levels of abstraction, such as 
creating a fox character as a design asset, adding the character to any 
existing levels, generating sound consistent with a chosen sound 
design aesthetic, etc. In another instance when Alice concretizes the 
power-up design (both mechanically and graphically), Jarvis must 
remember this abstraction upon generating further level design 
concepts. 

Integration is complex even for simple projects like Squirrel 
Game which involves the AI to remember, retrieve, and re�ect nec-
essary contextual information of the project. A major challenge of 
current AI systems is to manage memory and context. The memory 
contains all the data necessary for the project analogous to the 
human brain, and the context is the localized knowledge required 
for the model to complete the current task—analogous to working 
memory for humans. Current language models cannot do this by 
default. However, the approach of Park et al. [53] suggests how 
AI agents can implement long-term memory, memory retrieval, re-
�ection, and planning mechanisms necessary for integration. We 
can also achieve long-term generative agent memory using vec-
tor databases, and retrieve appropriate context using methods like 
retrieval-augmented-generation. Tools like CodePlan [4] perform 
repository-level code edits using LLMs using a multi-step chain of 
edits. 

4.6 Tropes and stereotypes in design support 
tools 

During design, a designer must choose between alternatives at 
many decision points and levels of abstraction (Figure 1b). A hu-
man designer is limited by their cognitive load, prone to forgetting 
important details or missing aspects of design until they are noticed. 
Even generic ideas, such as suggesting a narrative for the game, 
could prove bene�cial as they can cause the user to think about 
dimensions of design that they had not yet considered. Suggestions 

open up previously undiscerned or forgotten dimensions of vari-
ation within the abstract design space, as predicted by Variation 
Theory [43]. Both variation theory and activity theory argue that 
contrasts (what activity theory calls “contradictions”) between new 
elements and existing designs can improve designs and support 
human development [31, 43]. 

However, the trade-o� of suggestions from an AI is that they 
may be tropes that bias the designer towards the familiar. Game 
design in particular is a tension between remixing past tropes (of 
mechanics, aesthetics, narrative, etc.) with new and unexpected 
ideas. Tropes are design shortcuts—they can speed things along, 
motivate designers, and help onboard users—however, they can 
also lead to generic experiences.5 In the story, we see this tension 
in the initial negotiation between Jarvis and Alice. Jarvis calls Al-
ice’s idea “a bit bland” and suggests three ways to augment it: 
power-ups, a villain character, or a narrative motivation for the 
squirrel to collect nuts (for a starving family). All three were actual 
suggestions by GPT-4 in our prompt prototyping. While the last 
was the most unexpected to us, the �rst two are arguably video 
game tropes. These tropes can anchor or bias her, foreclosing al-
ternatives (e.g., making the overarching narrative about ecological 
disaster and deforestation—perhaps the levels get harder as the 
squirrel’s ecosystem is urbanized). Although priming the AI to be 
antagonistic seemed to lessen the generic-ness of suggestions, what 
the AI recommends during negotiation can still be a trope. This 
is a wicked problem [14]—there is no “best” solution to create the 
“perfect” design tool that is “unbiased”—but the potential for the 
tool to bias users, anchoring them on mediocre but familiar de-
sign choices, is something to always consider. Despite all this, even 
tropes and other generic suggestions o�er value: they contain con-
trasts to Alice’s externalized prototype and/or current intent that 
helps her discern and consider aspects of the design she had not 
previously [43]. Designers of AI tools can consider this in their de-
sign choices: for instance, in how many alternatives the AI presents 
to users, or in where and how the interface asks for user input 
(e.g., [42]). 

4.7 Summary of system requirements 
In summary, here are key system requirements to implement Jarvis, 
the AI agent. Jarvis needs to keep in memory: 

• a high-level plan for the game’s design (mechanics, art style, 
story, feel, sound, etc) 

• a model of who Alice is (her goals, preferences, desires, po-
tentially background and age) 

• a model of the current, external context (e.g., clock) 
• any constraints on the game’s development (e.g., target au-
dience or platform, deadlines) 

• a past history of interactions (conversations, actions Alice 
has taken, etc., a.k.a. a memory stream [53]) 

Jarvis also needs a model of when and how to: 
• ask questions to disambiguate intent 
• start a negotiation or con�ict, and to resolve it 
• refer to past events or contextual information 

5For example, the platformer game Celeste (2018) was not very new in its mechanics, 
but rather innovated with its narrative and music. 
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During the creation of the design, Jarvis needs to: 

• integrate decisions made at lower levels of abstraction (e.g., 
level one) into higher levels (i.e., the high-level plan) 

• propose short-term tasks and a long-term development plan 
to successfully execute the project 

• localize its “position” in the design space (i.e., what level of 
abstraction is the user currently iterating on?) and navigate 
“through” the design space (i.e., from level one to tweaking 
overall mechanics) 

• ground its contributions and suggestions in the notation 
preference of the user (e.g., drawing a fox in a sketchy style 
akin to Alice’s, or using similar language and terms to Alice) 

5 CONCLUSION AND NEXT STEPS 
In this paper, we described three a�ordances of LLMs for supporting 
design work. Unlike prior work focusing on broad principles or top-
down directives for human-AI collaboration (e.g., [61, 70]), we took 
a bottom-up approach, centering a scenario of use through design 
�ction. Though our paper presented our ideas in a linear fashion, in 
reality, the a�ordances, story, and technical details were mutually 
constituted during our design discussions—the narrative fed into 
the a�ordances, the a�ordances into the narrative, prototypes of 
technical feasibility into the a�ordances, etc. 

In the weeks since de�ning our three a�ordances, they have 
arisen again and again in our conversations with other human-
AI interaction researchers. Often other researchers are trying to 
explain, without a term, the quality one of these terms describes. 
Unlike other papers we are a part of, then, our motivation was 
to provide clarity to future design discussions—others will come 
to these phenomena, but most likely in a disjointed fashion, in 
separate papers each focusing on one aspect or other. We hope 
this nomenclature can aid future communication over research— 
if we are aware of these a�ordances, we can then explicitly talk 
about using and exploring them in research, fruitfully bounding 
our conversations on where precisely large AI models can provide 
value compared to prior technologies. 

It is important to remark that we do not consider it easy to im-
plement or take advantage of each of our three a�ordances with 
current AI models. Signi�cant sca�olding, technical innovation, 
and evaluation of interface designs must also be achieved to realize 
our near-future vision. Our method of using design �ction also had 
several limitations. While we erred against proposing a speci�c 
interface and implementation to evoke rather than prescribe, the 
process of designing an interface could have exposed us to ques-
tions and opportunities that we have not foreseen here. We also 
did not consider human-AI collaboration with multiple users and 
stakeholders. While we believe the three a�ordances we mentioned 
will still be applicable, having multiple people may bring more 
challenges that need to be addressed. 
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