
Interactive systems for code and data demography

Elena L. Glassman

December 21, 2017

Figure 1: Common system components.

Figure 2: Common system architecture.

I am a researcher in human-computer interaction (HCI), I design, build
and evaluate systems for code demography, i.e., comprehending and
interacting with population-level structure and trends in large code cor-

pora. These systems augment human intelligence by giving users a
“useful degree of comprehension in a situation that previously was too
complex.”1

1 D. C. Engelbart. Augmenting human
intellect: A conceptual framework. Stan-

ford Research Institute. Retrieved March, 1:
2007, 1962

In my doctoral and postdoctoral work at MIT and UC Berkeley, I have
used program analysis and synthesis techniques, interactive inference algorithms,

visualization principles, and theories from cognitive science to build systems that
allow people to complete existing large-scale code-related tasks more quickly
and answer new questions that were previously prohibitively time-consuming
to investigate (Figs. 1 and 2). For example, overcode (Fig. 3) is now deployed
at UC Berkeley, where teachers give code composition feedback to more than
1500 students in a few hours.2 examplore (Fig. 4) allows programmers, API

2 E. L. Glassman, J. Scott, R. Singh, P. J.
Guo, and R. C. Miller. Overcode: Visu-
alizing variation in student solutions to
programming problems at scale. ACM

Transactions on Computer-Human Interac-

tion, 22(2):7:1–7:35, Mar. 2015c. ISSN
1073-0516. URL http://doi.acm.org/
10.1145/2699751

designers, and researchers to answer questions about how API methods are
actually used in the wild.3 Now, as a fellow at the Berkeley Institute of Data

3 E. L. Glassman*, T. Zhang*, M. Hearst,
B. Hartmann, and M. Kim. Visualizing
api usage examples at scale. In Proceed-

ings of the Annual ACM Conference on Hu-

man Factors in Computing Systems, CHI
’18. ACM, 2018

Science, I am exploring how to generalize these methods beyond code to help
data scientists, social scientists, journalists, and other end-users more easily
work with large amounts of data and communicate their intent to machines
using concrete examples.

The conceptual key to my approach is defining task-relevant abstractions

through data-driven (1) user-centered design or (2) inference algorithms. For
example, I designed examplore’s abstract API skeleton to register and align
hundreds of usage examples against each other so that users can get a high-
level view of a corpus without sacrificing the ability to read concrete code. This
design is supported by theories of human learning, such as analogical learn-
ing and Variation Theory: showing multiple aligned examples simultaneously
helps induce accurate abstractions in the user’s mind. In fixpropagator, the
abstractions are inferred from data: as a programming teacher begins to fix
and give feedback on buggy student code submissions, the back end infers
more general, abstract code transformations to propagate fixes and relevant
teacher feedback to other buggy student code.4

4 A. Head*, E. L. Glassman*, G. Soares*,
R. Suzuki, L. Figueredo, L. D’Antoni,
and B. Hartmann. Writing reusable code
feedback at scale with mixed-initiative
program synthesis. In Proceedings of the

Fourth (2017) ACM Conference on Learn-

ing @ Scale, L@S ’17, pages 89–98. ACM,
2017. URL http://doi.acm.org/10.
1145/3051457.3051467

1. Tools for teachers and students in massive classrooms

Enrollment in introductory programming and data science courses is skyrock-
eting. Even hardware design classes can contain hundreds of students, each
constructing their own simulated circuits. It is both a challenge and an oppor-
tunity to reinvent how we teach students and how students teach each other.
With collaborators and mentees, I built, user-tested, and deployed five systems
at MIT and UC Berkeley that explore this space of possibilities.

overcode is an example of code demography for visualizing and explor-
ing thousands of solutions to the same programming problem. It uses both
static and dynamic analysis to cluster similar solutions and represents each
cluster as a synthesized solution that implicitly describes both the cluster cen-
ter and its boundaries. Teachers can filter and further cluster solutions based

http://doi.acm.org/10.1145/2699751
http://doi.acm.org/10.1145/2699751
http://doi.acm.org/10.1145/3051457.3051467
http://doi.acm.org/10.1145/3051457.3051467


interactive systems for code and data demography 2

Figure 3: overcode is an example of
code demography for teachers in mas-
sive programming classes who want to
understand the contents of the functions
their students wrote.

on various criteria. One of overcode’s key abstractions is equating variables
across solutions based on behavior during execution; these common variables
are each renamed to their most popular student-given name, which highlights
remaining differences in algorithms and syntax. In user studies, overcode
allowed teachers to more quickly develop a high-level view of student under-
standing and misconceptions, and provide feedback on selected examples that
are relevant to more student solutions.

Societal and potentially commercial impact

overcode has now been fully integrated into the code composition feedback
process of the largest introductory Python programming course at UC Berke-
ley, which regularly enrolls 1500 students: rather than distributing work to as
many as 50 graders, a handful of teaching assistants can give feedback to the
entire class in a few hours. We expect that this same feedback will be re-sent
to students in future semesters, with little additional effort on the part of the
teaching staff. Two Master’s students, one at MIT and one at UC Berkeley,
have earned—or soon will—their degree in EECS by contributing to this effort
and a third student at UC Berkeley is leading the charge to make this tool
available to all other schools with large Python programming courses. We are
also fielding requests to help others adapt this technology to other program-
ming languages.

Scalable, data-driven teaching by example

Variable names are an important component of code composition, but it is
difficult to quickly get an accurate picture of how well all your students are
naming variables, and prohibitively time-consuming to comment on individ-
ual variable names at scale. foobaz solves this problem by letting teachers
draw from their own students’ naming choices to create a set of examples
that clarify the concept of a good, contextually appropriate variable name.5 5 E. L. Glassman, L. Fischer, J. Scott, and

R. C. Miller. Foobaz: Variable name feed-
back for student code at scale. In Pro-

ceedings of the 28th Annual ACM Sympo-

sium on User Interface Software & Tech-

nology, UIST ’15, pages 609–617. ACM,
2015a. URL http://doi.acm.org/10.
1145/2807442.2807495

Specifically, foobaz uses overcode’s common variable abstraction to reveal
the distribution of student-chosen names for each common variable. Teach-
ers curate and label names of varying quality for the most common variable
roles, and foobaz sends each student a set of these examples to evaluate as
alternative names for the corresponding variable role in their own program.
Students then compare their judgments to teacher labels to help train their
inner variable naming critic.

http://doi.acm.org/10.1145/2807442.2807495
http://doi.acm.org/10.1145/2807442.2807495


interactive systems for code and data demography 3

Additional systems

I also developed and deployed dear beta and dear gamma in MIT’s large
introductory computer architecture course for collecting and distributing student-
written debugging and optimization hints for the entire spectrum of student-
constructed digital circuits.6 In the same class, I deployed mudslide, the 6 E. L. Glassman, A. Lin, C. J. Cai,

and R. C. Miller. Learnersourcing per-
sonalized hints. In Proceedings of the

ACM Conference on Computer-Supported

Cooperative Work & Social Computing,
CSCW ’16, pages 1626–1636. ACM,
2016. URL http://doi.acm.org/10.
1145/2818048.2820011

system I developed at Microsoft Research for collecting and visualizing the
distribution and content of student confusion across the slides of a presenta-
tion (CHI Honorable Mention).7 I also supervised an MIT EECS M.Eng. student

7 E. L. Glassman, J. Kim, A. Monroy-
Hernández, and M. R. Morris. Mud-
slide: A spatially anchored census of stu-
dent confusion for online lecture videos.
In Proceedings of the Annual ACM Confer-

ence on Human Factors in Computing Sys-

tems, CHI ’15, pages 1555–1564. ACM,
2015b. URL http://doi.acm.org/10.
1145/2702123.2702304

who created and deployed grovercode, an extension of overcode for more
quick and consistent exam grading for one of MIT’s large introductory Python
programming classes.8

8 S. Terman. Grovercode: code canonical-
ization and clustering applied to grad-
ing. Master’s thesis, Massachusetts In-
stitute of Technology, 2016

2. Supporting programmers in the wild and at companies with

large codebases

Understanding the space of possible code solutions is helpful beyond the class-
room, as well. examplore (Fig. 4) is an example of code demography for
visualizing and exploring thousands of code examples using the same API:
in collaboration with software engineering researchers at UCLA, we created
an interactive visualization by mining hundreds of thousands of open-source
Github repositories to reveal the common and uncommon ways in which the
open-source developer community uses a Java API method.9 In a within- 9 E. L. Glassman*, T. Zhang*, M. Hearst,

B. Hartmann, and M. Kim. Visualizing
api usage examples at scale. In Proceed-

ings of the Annual ACM Conference on Hu-

man Factors in Computing Systems, CHI
’18. ACM, 2018

subjects lab study, we found that examplore helped programmers under-
stand the distribution of usage patterns of a particular API method in the
wild, and answer common API usage questions accurately. I plan to make this
tool available as an online resource that complements official documentation
and Q&A sites. I also hope to work with engineers and researchers at com-
panies with large proprietary codebases and APIs, like Google and Facebook,
to customize this tool for their internal on-boarding and code review needs.
Through initial contacts, it is clear that these companies are eager to adopt and
exploit new methods and interfaces, like examplore, to increase programmer
productivity.

Figure 4: In this screenshot, examplore
shows the head of the canonicalized dis-
tribution of FileInputStream API usage
in 100 open-source Github repositories.

http://doi.acm.org/10.1145/2818048.2820011
http://doi.acm.org/10.1145/2818048.2820011
http://doi.acm.org/10.1145/2702123.2702304
http://doi.acm.org/10.1145/2702123.2702304


interactive systems for code and data demography 4

3. Collaborating with PL and ML researchers to improve the

interface between people and intelligent back ends

Theories of human concept learning, e.g., Variation Theory,10 assert that show- 10 M. Ling Lo. Variation theory and the im-

provement of teaching and learning. Göte-
borg: Acta Universitatis Gothoburgensis,
2012

ing people strategically diverse sets of examples will help them construct men-
tal abstractions that generalize well. The same is true when teaching machines.
In the following projects, I show how examples are mined for data-driven
teaching of both humans and machines. To achieve these results, I collabo-
rated with academic and industry researchers in programming languages (PL)
and machine learning (ML) to produce systems with cutting-edge intelligent
back ends and front ends that enable real-world impact.

In my first exploration of example-based inference frameworks, specifically
the interactive Bayesian Case Model (iBCM), I collaborated with iBCM’s cre-
ator to build an interface on top of the model to test how well domain ex-
perts could collaborate with the machine—by choosing examples and critical
features—to define statistically valid clusters that were also relevant to the ex-
pert’s tasks.11 These experts were Python teachers clustering student-written 11 B. Kim, E. L. Glassman, B. Johnson,

and J. Shah. ibcm: Interactive bayesian
case model empowering humans via in-
tuitive interaction. MIT CSAIL Technical
Report, 2015

Python programs and, despite a clever encoding of these programs that cap-
tured some semantics, iBCM was not well matched to the task: it was only con-
cerned with statistical distributions of features, and therefore not sufficiently
concerned with the semantics of the programs themselves.

When I joined UC Berkeley as a postdoctoral scholar funded by the NSF
Expeditions in Computer Augmented Program Engineering (ExCAPE) grant,
I was introduced to program synthesis by example and the newly available
Microsoft PROgram Synthesis by Example (PROSE) SDK. I collaborated with
PL researchers to build two successful systems on top of this technology (fix-
propagator and mistakebrowser, described below) and co-organized a
workshop to help other researchers use PROSE for their own research pur-
poses. At the Dagstuhl Seminar “Approaches and Applications of Inductive
Programming,” we concluded that the tools are mature enough for us to con-
centrate on developing theory and methods around how users interact with
them.

Interacting with program synthesis by example

I led the development of two interactive systems that leverage program syn-
thesis by example.12 fixpropagator allows teachers to teach the machine, 12 A. Head*, E. L. Glassman*, G. Soares*,

R. Suzuki, L. Figueredo, L. D’Antoni,
and B. Hartmann. Writing reusable code
feedback at scale with mixed-initiative
program synthesis. In Proceedings of the

Fourth (2017) ACM Conference on Learn-

ing @ Scale, L@S ’17, pages 89–98. ACM,
2017. URL http://doi.acm.org/10.
1145/3051457.3051467

by demonstration, how they would fix a bug in a particular student solu-
tion. In the back end, a state-of-the-art program synthesis technique infers
more general abstract syntax tree (AST) transformations, e.g., var*var be-
comes f(var)*var, that are consistent with the teacher’s demonstration.13

13 R. Rolim, G. Soares, L. D’Antoni,
O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann. Learning
syntactic program transformations from
examples. In Proceedings of the 39th Inter-

national Conference on Software Engineer-

ing, ICSE ’17, pages 404–415. IEEE Press,
2017. URL https://doi.org/10.1109/
ICSE.2017.44

These inferred abstract transformations are applied to fix other buggy student
solutions as well. mistakebrowser uses the same program synthesis tech-
nique to infer abstract code transformations from examples of students fixing
bugs in their own submissions, which were mined from the autograder logs
of a massive programming course. In other words, as students fix their own

bugs, the machine is learning to fix other student bugs in the same way. In-
correct submissions are clustered by the machine-inferred transformations that
correct them and presented to the teacher. As a result, the space of common
and uncommon bugs becomes explicit and human-understandable almost at
a glance. For each cluster, teachers write feedback that can be propagated to
all current and future code submissions fixed by the same transformation.

http://doi.acm.org/10.1145/3051457.3051467
http://doi.acm.org/10.1145/3051457.3051467
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44


interactive systems for code and data demography 5

Research directions

Generalizing from code to data demography

Many people who work with data have datasets that are too large, too noisy,
too complex, or too unstructured to make sense of at once. How can code
demography be generalized to more kinds of data, especially data types that
have structure but also require reading and interpretation, e.g., natural lan-
guage or mathematical statements written in LATEX? As a first step, I would
like to investigate whether the types of abstractions inferred by data-driven
program synthesis algorithms can help extend visualizations like examplore
to represent large semi-structured collections of text, e.g., massive log files or
large collections of paper abstracts.

There are also ample opportunities to assist data journalists and social sci-
entists. For example, a professor of international relations at Harvard Univer-
sity asked me to analyze a large collection of geolocated tweets from Egypt
to discover population-level changes in political expression over time during
the recent revolution. I discovered that the same trade-offs between time and
frequency resolution in signal processing existed in the processing of time-
varying textual corpora. Given my prior work on wavelet-like filters for multi-
resolution analysis of biomedical signals,14 I am now composing algorithms 14 E. L. Glassman. A wavelet-like fil-

ter based on neuron action potentials
for analysis of human scalp electroen-
cephalographs. IEEE Transactions on

Biomedical Engineering, 52(11):1851–1862,
2005

and visualizations for multi-resolution analysis for time-evolving text corpora.
I hope to create and test prototypes in collaboration with a variety of domain
experts who could benefit from these tools.

How can we more naturally communicate our intent to machines?

The critical, possibly latent, structural features that distinguish examples from
each other help both humans and machines learn concepts and infer abstrac-
tions that generalize well. Examples are, therefore, a natural medium for
communication between people and machines. Code and data demography
strongly support this kind of communication: it exposes the population-level
characteristics of large datasets in a way that keeps concrete examples front
and center instead of hiding them behind nodes in large graphs or other ab-
stractions. Some of the systems I hope to build next will combine example-
based inference techniques with data demography to help users thoroughly
examine the data in their corpus (1) before selecting examples to teach the ma-
chine and (2) while reviewing the machine-inferred results. I expect that data
demography will help users clarify their own intentions15 and curate better 15 V. Le, D. Perelman, O. Polozov,

M. Raza, A. Udupa, and S. Gulwani.
Interactive program synthesis. CoRR,
abs/1703.03539, 2017. URL http://
arxiv.org/abs/1703.03539

examples to teach machines, much like overcode and foobaz helped teach-
ers understand the state of their massive classroom and pick better examples
to address student misconceptions. I hope to continue working with experts in
programming languages and machine learning to improve the ways in which
humans and machines communicate and collaborate, in order to develop ap-
plications with real-world impact.

How can data demography increase algorithmic transparency?

When a domain expert applies a function to their large dataset, regardless of
whether they wrote that function themselves or it was learned from data, it is
difficult to verify that the function performed as the expert intended on every

http://arxiv.org/abs/1703.03539
http://arxiv.org/abs/1703.03539


interactive systems for code and data demography 6

data point. Machine-inferred functions can also be difficult to inspect directly:
they may be composed of many layers, nonlinearities, and weights, a hyper-
plane in high-dimensional space, or a program written in a grammar that
the end-user is completely unfamiliar with. I plan to build systems that ad-
dress this challenge by generalizing data demography to reveal population-level

changes in datasets induced by a function. This is particularly important for
functions that are otherwise difficult to interpret, e.g., neural networks. While
exposing the induced changes may reveal machine errors that temporarily
lower the expert’s confidence in the function’s correctness, the demographic
view should also reveal information that helps the expert debug, e.g., quickly
identify false positives and false negatives or data in the corpus that was in-
correctly extracted or transformed.

For a concrete, near-term example of how data demography could help
users review machine-inferred results, consider how mistakebrowser cur-
rently communicates a machine-induced bug-fixing abstract code transforma-
tion to the user, a teacher: the interface renders a list of all the buggy student
code submissions before and after the bug-fixing transformation was applied.
It can be cognitively exhausting to review this list, so the teacher often only
looks at a few transformed student code submissions and does not necessar-
ily get an accurate picture of how the transformation is acting on all their
students’ code. Teachers may form inferences more quickly and accurately if
each cluster of transformed code is visualized in an aligned and overlaid way,
much like the API usage examples in examplore.

Similarly, I would like to explore how data demography can increase the
transparency of—and trust in—autonomous system behavior. Just prior to
entering the field of HCI, I was publishing distance functions for planning dy-
namic movements for robots.16,17 Just as code demography helps program- 16 E. L. Glassman and R. Tedrake. A

quadratic regulator-based heuristic for
rapidly exploring state space. In Robotics

and Automation (ICRA), 2010 IEEE Inter-

national Conference on, pages 5021–5028.
IEEE, 2010
17 E. L. Glassman, A. L. Desbiens, M. To-
benkin, M. Cutkosky, and R. Tedrake.
Region of attraction estimation for a
perching aircraft: A lyapunov method
exploiting barrier certificates. In Robotics

and Automation (ICRA), 2012 IEEE Inter-

national Conference on, pages 2235–2242.
IEEE, 2012

mers quickly explore an unfamiliar API, can trajectory demography help roboti-
cists or end-users quickly make correct inferences about how a new robot will
behave under a variety of circumstances? As a faculty member, I hope to
reconnect with the robotics community and explore possible collaborations.

When the system fails, how do we debug?

As powerful as communicating with machines by example, annotation, and
demonstration can be, existing systems can fail in opaque and frustrating
ways. How do we build systems that explain their failure to synthesize a pro-
gram that is consistent with user-provided examples? A simple failure mode
in program synthesis occurs when the synthesizer’s grammar does not match
the user’s mental model: perhaps the user is teaching the machine how to ex-
tract something from raw HTML but the grammar has no notion of matching
start and end tags. The program synthesis toolkit my systems currently use,
the Microsoft PROSE SDK, requires an expert-designed grammar to perform
well on new tasks and corpora. Rather than co-create abstractions in a fixed
grammar, what if the machine and the end-user could co-create, or at least
modify, the grammar itself? As a first step, I hope to create visualizations and
interaction mechanisms that demystify the internal state of program synthe-
sis engines when they fail. I will continue collaborating with programming
language researchers in academia and industry, such as my colleagues on the
PROSE SDK core developer team at Microsoft Research, to create better in-
spection, debugging, and interaction tools for end-users and developers alike.


	1. Tools for teachers and students in massive classrooms
	2. Supporting programmers in the wild and at companies with large codebases
	3. Collaborating with PL and ML researchers to improve the interface between people and intelligent back ends
	Research directions

