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ABSTRACT
For machine learning models to be most useful in numerous so-
ciotechnical systems, many have argued that they must be human-
interpretable. However, despite increasing interest in interpretabil-
ity, there remains no firm consensus on how to measure it. This is
especially true in representation learning, where interpretability re-
search has focused on “disentanglement” measures only applicable
to synthetic datasets and not grounded in human factors. We in-
troduce a task to quantify the human-interpretability of generative
model representations, where users interactively modify represen-
tations to reconstruct target instances. On synthetic datasets, we
find performance on this task much more reliably differentiates
entangled and disentangled models than baseline approaches. On a
real dataset, we find it differentiates between representation learn-
ing methods widely believed but never shown to produce more or
less interpretable models. In both cases, we ran small-scale think-
aloud studies and large-scale experiments on Amazon Mechanical
Turk to confirm that our qualitative and quantitative results agreed.
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1 INTRODUCTION
Many have speculated that machine learning (ML) could unlock
significant new insights in science and medicine thanks to the in-
creasing volume of digital data [30]. However, much of this data is
unlabeled, making it difficult to apply many traditional ML tech-
niques. Generative modeling, a subfield of ML that does not require
labels, promises to help by distilling high dimensional input data
into lower dimensional meaningful axes of variation, which we call
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representations. To be most useful in “unlocking insights,” though,
these representations must be understood by human researchers.

Motivated by the need for human understanding, a burgeon-
ing research area of interpretable ML has emerged [23, 27]. While
some of this work has used user studies to quantify interpretabil-
ity [35, 42, 45, 59], there have been concerns within the HCI commu-
nity that these studies do not generalize to more realistic use cases
[13]. These studies are also largely in the context of discriminative
rather than generative modeling—even in the few that consider rep-
resentations [5]. Within generative modeling, ML researchers have
tried to quantify interpretability via measures of disentanglement,
which measure how well individual representation dimensions
match ground-truth factors that generated the data [60]. However,
this work is not tested on actual human users, nor are disentangle-
ment measures computable without knowing ground-truth factors.

In this work, we develop a method for quantifying the inter-
pretability of generative models by measuring how well users can
interactively manipulate representations to reconstruct target in-
stances. To validate it, we use both MTurk and lab studies to deter-
mine whether models known to be understandable a priori can be
distinguished from those known to be complex, and also whether
our quantitative metrics match qualitative feedback from users.
We also investigate the relationship between our human-grounded
interpretability measures and synthetic disentanglement measures.

Our main contributions are as follows:

• A task for evaluating the interpretability of generative mod-
els, where users interactively manipulate representation di-
mensions to reconstruct target instances.

• Large-scale experiments on Amazon Mechanical Turk and
smaller-scale think-aloud studies showing our task distin-
guishes entangled from disentangled models and that perfor-
mance is meaningfully related to human model understand-
ing, as demonstrated and reported by study participants.

• Novel results suggesting that ML methods which improve
disentanglement on synthetic datasets also improve inter-
pretability on real-world datasets.

2 RELATEDWORK
2.1 Human-Centered Interpretability Measures
While there have been criticisms that “interpretability” is ill-defined
[51], several works have focused on quantifying it, particularly for
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discriminative models [1, 3, 23, 25, 35, 43, 45, 50, 59, 64, 66]. Per
Doshi-Velez and Kim [23] and Miller [55], these works typically
ground interpretability as the capacity of themodel to be sufficiently
understood in an appropriate context, and operationalize it as a
user’s ability to perform various tasks given visualizations of a
model according to some performance measures—where the tasks
and measures are presumed to be relevant to the desired context.
They then study the effect of varying visualizations or models on
task performance measures.

As a concrete example, Kulesza et al. [44] present different vi-
sualizations of a random forest [12] model, and as their task, ask
users a series of questions in a thinkaloud-style protocol [49]. Their
performance measure is the difference between the number of ac-
curate and inaccurate statements about the model made by the user,
which they compute by transcribing interviews and individually
categorizing each statement. As their theoretical grounding, they
draw on notions of understanding from Norman [56], who defines
understanding in terms of user mental model accuracy. They find
that visualizations produce more accurate mental models when
complete (the whole truth) and sound (nothing but the truth), even
if satisfying those conditions dramatically increases complexity.

More commonly, interpretability is operationalized as simulabil-
ity: whether humans can use visualizations to predict the behavior
of themodel in new circumstances [23, 35, 45, 46, 50, 59, 66]. Though
the theoretical grounding of this method is perhaps less clear than
the mental model accuracy paradigm of Kulesza et al. [44] or the
cognitive load paradigm of Abdul et al. [1], simulation tasks have
the advantage of being model-agnostic and easy to analyze pro-
grammatically, which allows them to be used in semi-automated
human-in-the-loop optimization procedures such as Lage et al. [46].
However, such simulability tasks generally do not present “the
whole truth” of the model at once. Our method extends the simula-
bility paradigm from discriminative to generative modeling, but in
a way that presents the whole truth of the model.

2.2 Interpretable Representation Learning
Background. Representation learning is generally concerned with
finding ways of associating high-dimensional instances, which we
denote x , with low-dimensional representations, which we denote
z. Representation learning methods roughly fall in two categories:
generative modeling, which maps low-dimensional representations
z to high-dimensional instances x , and embedding, which maps
high-dimensional instances x to low-dimensional representations
z. Examples of generative models include Hidden Markov Models
[26], Latent Dirichlet Allocation [11], and GANs [28]. Examples
of embeddings include t-SNE [53] and the latent spaces of deep
classification models. Examples of both simultaneously (i.e. approx-
imately invertible mappings) include PCA [36] and autoencoders
[34].

Disentangled representations and disentanglement mea-
sures. Disentangled representations [10, 20, 22, 33] seek mappings
between high-dimensional inputs and low-dimensional representa-
tions such that representation dimensions correspond to the ground-
truth factors that generated the data (which are presumed to be
interpretable). To evaluate a model’s disentanglement, many papers

compute disentanglement measures with respect to known ground-
truth factors. However, not only do there exist many competing
measures [19, 24, 32, 33, 52, 65], but, to our knowledge, there exists
no work that compares them to human notions of understandability.
Our work both performs this comparison and provides a way to
evaluate representation learning methods on real-world datasets,
where we cannot rely on disentanglement measures because the
ground truth is generally unavailable to us.

Explaining and visualizing representations. To be under-
stood, a representation must be visualized or explained. For gener-
ative models, this usually means explaining each dimension. Many
works [19, 20, 33, 39, 41] show a “latent traversal” of instances
with linearly varying values of a specific dimension and constant
values of other dimensions. Others find or construct “exemplar”
instances that maximize or minimize particular (combinations) of
dimensions [4, 57, 58]. Another visualization technique, less com-
mon because it requires setting up an interactive interface, is to let
users dynamically modify representation dimensions and see how
corresponding instances change in real time, e.g. using sliders [29].
Related approaches have been explored for discriminative models
with predefined meaningful features, e.g. Krause et al. [43], Wexler
et al. [71], and Cai et al. [15], who use sliders to display exemplars
matching user-defined concept activation vectors [38]. However, to
our awareness, interactive manipulation of autonomously learned
generative model dimensions has not been considered in an HCI
context, especially to quantify interpretability. We use interactive
slider-based visualizations as a subcomponent of our task, and test
against baseline approaches using exemplars and traversals.

We do note there are other representation learning visualization
methods that could be used in interpretability quantification but
do not provide insight into the individual meanings of dimensions
and are often specific to embeddings rather than generative models.
Examples include Praxis [17], the embedding projector [68], and a
parallel-coordinates-inspired extension by Arendt et al. [5], which
further reduce embedding dimensionality down to 2D or 3D with
PCA or t-SNE [53]. All of these methods are interactive and can help
users understand the geometry of the data andwhat information the
representation preserves, but they do not explain the dimensions of
variation themselves. Bau et al. [7, 8] both visualize and quantify the
interpretability of representations by relating dimensions to dense
sets of auxiliary labels, but their approach (while highly effective)
is not applicable to most datasets. Our focus is on quantifying how
well users can understand representations on their own, in terms of
their dimensions, without further projection or side-information.

3 APPROACH
We now define our proposed task for evaluating the interpretability
of generative models, which we call “interactive reconstruction,”
and ground it as a measure of understanding.

3.1 The Interactive Reconstruction Task
Assume we are given a generative model д(z): RDz → RDx , which
maps from representations z to instances x . Also assume we are
given a distribution p(Z ) from which we can sample representa-
tions z (which may be approximated by sampling from a dataset
{z(1), z(2), ..., z(N )}), as well as a list of permitted domains Z =
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(Z1,Z2, ...,ZDz ) for each dimension of z (e.g. a closed interval if
zi is continuous, or a set of supported values if zi is discrete). Finally,
assume we are given some distance metric d(x ,x ′) and threshold ϵ .

The task consists of a sequence of Nq questions. For each, we
sample two representation values z, z′ iid from p(Z ), which have
corresponding instance values x = д(z) and x ′ = д(z′). In an
interface, we visualize x and x ′ along with their distance d(x ,x ′)
and its proximity to the threshold ϵ . We also present manipulable
controls that allow the user to modify each component of z within
Z to interactively change x = д(z) and thus the distance d(x ,x ′).
The user’s goal is tomanipulate the controls as efficiently as possible
to bring d(x ,x ′) ≤ ϵ , thereby reconstructing the target. Once this
condition is achieved, we repeat the process for newly sampled z
and z′. If a user actively attempts to solve a question for a threshold
amount of time T to no avail, we permit them to move on.

During each question, we continuously record the values of z,
the errors d(x ,x ′), the dimensions i being changed, and the direc-
tions of modification (increasing or decreasing). These records let
us precisely replay user actions and from them, derive a rich set
of performance metrics, which we enumerate in Section 4.4. We
hypothesize that, while the task will be possible to complete with-
out understanding the model, users will perform it more reliably
and efficiently when they intuitively understand what represen-
tation dimensions mean. We also hypothesize that the process of
performing it will teach users these intuitive meanings when they
exist—that is, when the model is interpretable.

The above is a general definition of the interactive reconstruc-
tion task. To apply it to a specific problem, however, a number of
implementation choices must be made:

• Control of representations z: There are many different
ways of inputting values for representation dimensions (e.g.,
numeric fields vs. sliders for continuous dimensions, or radio
buttons vs. dropdowns for discrete dimensions), and also
many different ways of arranging and annotating them (e.g.,
allowing reordering, grouping, and labeling, which can be
helpful for higher-dimensional z).

• Visualization of instancesx :Although some instancemodal-
ities have canonical visualizations (e.g., images), others can
be visualized in many ways (e.g., patient medical records).
Visualizations should make it easy to recognize the effects
of changing z and compare whether x and x ′ are becoming
closer with respect to d(·, ·).

• Choice of distancemetricd(x ,x ′), distance threshold ϵ ,
and time threshold T : These critical parameters are best
chosen together. For our experiments, we relied on small
studies for each dataset, seeking d(·, ·) and ϵ that captured
when users subjectively felt they hadmanipulated x to match
x ′ sufficiently closely, and setting T to a round number on
the order of twice the median duration.

We describe our dataset-specific choices in Section 4.3, but recom-
mend these be re-tuned for new applications.

3.2 Theoretical Grounding for the Interactive
Reconstruction Task

A number of sources in the HCI literature motivate and ground
our interactive reconstruction task as a meaningful measure of

understanding. First, as recommended by Kulesza et al. [44], our
method attempts to present the “whole truth” and “nothing but
the truth:” we visualize the entire model without any simplifying
approximations. For generative models, visualizing the full model
also means, to the greatest extent possible, visualizing dimensions
jointly rather than separately (as is the case when using, e.g., latent
traversals). We adopt this strategy in line with cognitive load theory
as articulated by Sweller [69], who argues that “understanding”
emerges from explaining interactions between elements of a schema
(“the basic unit of knowledge”), and that explaining interacting
elements separately will make material harder to understand, rather
than easier to understand, because of the split attention effect [18].

We also attempt to avoid split attention effects between the visu-
alization and the proxy task. In many interpretability measurement
methods, these two components are visually separate, e.g., in differ-
ent portions of the screen [35, 45, 46, 59]. Such physical separation
often makes it possible or even preferable to complete the task
without engaging with the visualization, e.g., by guessing multiple-
choice answers to complete the task more quickly. In recent HCI
studies of interpretability tools, both Buçinca et al. [13] and Kaur
et al. [37] note an inconsistency between outcomes in thinkaloud
studies, where cognitive engagement with a visualization is forced,
and practice, where the visualization can be readily ignored. By
closely integrating the visualization and the task, we attempt to
avoid this pitfall.

Finally, per Norman’s articulation of the importance of feedback
for building understanding in human-centered design [56], our
task is structured to provide immediate, interactive feedback. Just
from looking at the screen, it is always readily apparent to users
whether they have gotten the right answer, and whether they are
getting closer or further away. In contrast, for most simulation-
proxy interpretability measurement tasks [35, 45, 59, 66], if users
receive feedback at all, it is sporadic, e.g., about whether a multiple
choice answer was correct.

3.3 Baseline: the Single-Dimension Task
As a baseline to our interactive reconstruction task, we also con-
sider a “single-dimension” task, inspired by existing interpretability
measurement methods for discriminative models (Section 2.1). Here,
users are given an instance x = д(z) and asked to guess the value
of some hidden dimension zi . To help them, users may view visu-
alizations of other instances as dimension i is varied, shown in a
different section of the screen. For each model, users are asked Nq
questions about each dimension, and receive feedback after each
question about whether their answer was correct. Details for our
dataset-specific implementations are in Section 4.5.

The single-dimension task is deliberately designed to violate our
theoretical motivations; specifically, (1) it does not present “the
whole truth” of the model, (2) it visualizes dimensions individu-
ally rather than jointly, (3) it spatially separates the visualization
from the task, and (4) it provides feedback sporadically (after each
question) rather than interactively.
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3.4 Quantifying Quality of Interpretability
Measurement Methods

Measuring the accuracy of any measurement method generally
requires testing with a precisely known quantity. In this paper,
we assume ground-truth knowledge that a particular model is more
interpretable than another by working with synthetic datasets con-
structed for the express purpose of making this assumption rea-
sonable, and supported by qualitative studies. We then test how
well different interpretability measurement methods detect this
assumed ground-truth difference. Where possible, we support our
assumptions with quantitative measures of models’ correspondence
to ground-truth, e.g. disentanglement measures.

Our approach contrasts with the strategy of Buçinca et al. [13],
who evaluate interpretability evaluation “proxy tasks” by how well
they predict performance on downstream tasks. Although the ulti-
mate motivation for interpretability research is to improve perfor-
mance on downstream tasks ranging from better human+AI collab-
oration [6] to auditing for safety [16], performance on these tasks
has no explicit correspondence to understanding. Additionally, in
research settings, we often lack access to the true downstream tasks
that motivate our work; thus our downstream validation task is also
a proxy. So in effect, we are not evaluating whether a proxy task
measures interpretability, but whether one proxy predicts another.

4 IMPLEMENTATION
We now describe how we implement our approach for a variety of
representation learning models and datasets.

4.1 Datasets
We considered three datasets, visualized in Figure 1:

• dSprites [54], a 64×64 binary image dataset with five ground-
truth factors of generation z: shape, rotation, size, x-position,
and y-position. We chose dSprites due to its popularity in
the disentanglement literature (Section 2.2).

• Sinelines, a 64-dimensional timeseries dataset we developed
for this study. Each instance x = ⟨x1,x2, ...,x64⟩ is a mixture
of a line and a sine wave, generated by mapping: xt = z1t +
z2 + z3 sin(z4t + z5), where z1 ∼ Uniform(−1, 1) is slope,
z2 ∼ N(0, 1) is intercept, z3 ∼ Exponential(1) is amplitude,
z4 ∼ Exponential(1) is frequency, and z5 ∼ Uniform(0, 2π )
is phase. We make z 5-dimensional for consistency with
dSprites, but make x a timeseries rather than an image to
probe sensitivity to instance modality.

• MNIST [47], a popular benchmark in the ML and inter-
pretable representation learning literature consisting of im-
ages of handwritten digits from 0 to 9. Although the MNIST
dataset lacks ground-truth representations, it does contain
labels indicating depicted digits.

4.2 Models
On dSprites and Sinelines, we tested the following models:

• “Ground-truth” (GT) generative models, constructed to
have the same relationship between x and z as the (intention-
ally interpretable) process which generated the examples.

• Autoencoders (AE) [34], a baseline nonlinear represen-
tation learning method often considered to learn uninter-
pretable representations.

• Variational autoencoders (VAE) [41], which are similar
to autoencoders but learn distributions over z, with a prior
on z that can be interpreted as a regularizer. Because of this
regularization effect, VAEs are widely reputed to learn more
interpretable relationships between instances and represen-
tations than standard autoencoders.

Our primary goal was to validate that our task could distinguish
entangled autoencoders from disentangled ground-truth models
(both absolutely and relative to baselines).

Architecturally, for dSprites, we used the same 7-layer convo-
lutional neural networks (CNNs) as Burgess et al. [14], one of the
original papers introducing dSprites (with the GT model just using
the decoder). For Sinelines, we used 256×256 fully connected net-
works with ReLU activations (except for the GT model, which was
simple enough to implement in closed form). We tested all models
at Dz = 5 to match ground-truth.

On MNIST, which has no ground-truth model, our goal instead
was to test a broader set of popular interpretable representation
learning methods that have never been tested with user studies.
We again tested on AEs and VAEs, but also included the following
models from the disentanglement literature:

• β-TCVAEs (TC) [19], a modification of the VAE that is
trained to learn representation dimensions zi that are statis-
tically independent, generally considered near state of the
art in the disentanglement literature.

• Semi-supervised β-TCVAEs (SS), a modified β-TCVAE we
explicitly train to disentangle digit identity from style (in a
discrete dimension). Though we lack full ground truth, we
expect SS to be less entangled than TC.

• InfoGAN (IG) [20], a generative adversarial [28] disentan-
glement method that also learns to disentangle digit identity
from digit style, but imperfectly and without supervision.

We tested all of these MNIST models (AE, VAE, TC, SS, and IG) at
Dz = 5 but additionally tested AE, TC, and SS at Dz = 10 to probe
sensitivity to representation dimensionality. Architecturally, for all
models, we use the same CNN architecture given in the papers in-
troducing InfoGAN [20] and β-TCVAE [19] (Table 4), changing only
the size of the latent dimension Dz . Training details were chosen
to match original specifications where possible; see Section A.1 of
the Appendix for additional details as well as model loss functions.

On dSprites and Sinelines, we quantified the extent to which
our models matched ground truth with disentanglement measures.
Specifically, we computed the DCI disentanglement score [24] and
the mutual information gap (MIG) [19], which are commonly in-
cluded in disentanglement papers. In addition to these overall scores,
we computed pairwise mutual information to visualize dependence
on a per-dimension basis. Figure 2 shows each of these metrics
for each dimension and dataset. On both datasets, GT models are
perfectly disentangled and AE models are heavily entangled. VAEs
are somewhere in the middle, partially disentangling horizontal and
vertical position from shape, scale, and rotation on dSprites, and
partially disentangling linear from sinusoidal factors on Sinelines.
As mentioned previously in Section 3.4, we use these metrics to
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Figure 1: Examples from the dSprites, Sinelines, and MNIST datasets.

Figure 2: Disentanglement scores (in plot titles) and pair-
wise mutual information (in heatmaps, approximated using
2D histograms) between true generative factors and repre-
sentation dimensions. By construction, ground-truth (GT)
models are perfectly disentangled, while VAEs learn to par-
tially concentrate information about certain ground-truth
factors into individual representation dimensions. AEs ex-
hibit less clear relationships and have the lowest disentan-
glement scores.

support our assumption that GTmodels are more interpretable than
AEs. On MNIST, we have no ground truth model, but we hypothe-
size that the semi-supervised (SS) model will be most interpretable
due to disentanglement between its continuous dimensions and
ground-truth digit identity.

4.3 Interface
Figure 3 shows examples of the user-facing interface for thismethod,
implemented for two different datasets. The following interface ele-
ments correspond to the interactive reconstruction task parameters
described in Section 3.1:

Control of representations z: To specify closed-interval con-
tinuous dimensions of z, we use slider components, while to specify
finite-support discrete dimensions, we use unlabeled radio buttons.
We sampled initial z and target z′ from p(Z ) set to the empirical
distribution, or specifically a heldout testing split of the dataset.
Slider ranges were determined by taking the empirical minimum
and maximum values of each dimension zi over this heldout split.
The one exception to this procedure was for the InfoGAN model,
where sampling and limits were determined from the prior.

Visualization of instances x : For images, visualization was
straightforward, while for Sinelines, we used line charts with dashed
lines aty = 0 and appropriate limits. In addition to visualizing x and
x ′ side-by-side, we provided an option to overlay them with partial
transparency, which we found was helpful in pilot experiments
for fine-tuning. This defaulted to on for our synthetic experiments,
but was defaulted to off for MNIST after pilot users expressed the
side-by-side view was more helpful. For MNIST in particular, to
facilitate remembering (and recording) user impressions of dimen-
sion meanings, we allowed users to input custom labels next to the
corresponding controls in the interface.

Distance and time thresholds: For each dataset, we defined
d(x ,x ′) as a Jaccard distance [48], i.e., the fraction of disagreeing
dimensions of x and x ′ to total active dimensions of x and x ′, with
dataset-specific definitions of agreement and activity. Exact expres-
sions are given in Section A.2 of the Appendix. Although these
choices worked well for black and white images and consistently-
scaled timeseries, different metrics might be necessary for other
datamodalities; we discuss this further in Section 7. Becaused(x ,x ′)
was between 0 and 1, we visualized it as an agreement percentage
rather than a distance, and chose ϵ = 0.1 (or a 90% agreement
threshold) for synthetic datasets and ϵ = 0.25 (or a 75% agreement
threshold) for MNIST.

The time thresholdT for skipping questions was set to 30 seconds
for dSprites and Sinelines and 45 seconds for MNIST. We paused
this hidden countdown whenever users were inactive for more than
3 seconds.

We implemented tasks as single-page, client-side web applica-
tions, with machine learning models running directly in users’ web
browsers after being converted to TensorFlow.js [67]. Despite the
fairly large size of certain models (e.g. 7-layer convolutional neural
networks), only two users out of hundreds reported problems run-
ning them interactively in-browser. Links to the task for all models
can be found at http://hreps.s3.amazonaws.com/quiz/manifest.html.

4.4 Interactive Reconstruction Metrics
We computed the following performance metrics from our records
of users performing the interactive reconstruction task:

• Completion rate: For each model, we measure the fraction
of questions the user solves, i.e. moves the sliders and/or
chooses radio buttons to make d(x ,x ′) ≤ ϵ , rather than
skipping after T seconds.

• Response time: For each model, we measure the average
time it takes participants to complete each question.

http://hreps.s3.amazonaws.com/quiz/manifest.html
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Figure 3: Screenshots of the interactive reconstruction task on Sinelines (left, with x and x ′ overlaid and dotted lines indicating
the region of allowable alignment) and MNIST (right, with separated x and annotations for z).

• Slide distance: For each model, we measure the average
total distance moved by sliders, in units of full slider widths,
for each question. Discrete changes count as 1.

• Error AUC:Wemeasure the “area under the curve” of mean
squared difference between x and x ′ over the total time the
user is attempting to solve the quiz.

• Self-reported difficulty: After answering a “stage” of ques-
tions about a model, users rate that difficulty from 1 to 7
using a Single Ease Question (SEQ) [62].

We store snapshots of x and z every 100ms while the value is
changing in a constant direction, or whenever the active direction or
dimension changes.While this list is not an exhaustive enumeration
of all possible metrics applicable to the task, others can be defined
and computed post-hoc as we store a nearly complete record of
user actions over time.

4.5 Single-Dimension Task Parameters
In this section, we describe howwe instantiated the single-dimension
task for the synthetic datasets. This task has two primary imple-
mentation parameters: the prediction task and the visualization.

For the prediction task, we opted for a multiple-choice classifica-
tion task where, for a particular example x visualized in the same
way as in the interactive reconstruction task, users decided whether
zi is “Low,” “Medium,” or “High.” These regimes were respectively
defined in terms of the 1st-5th, 48th-52nd, and 95th-99th percentiles
of the marginal distribution of encoded x in a held-out split of the
original dataset. We sampled z by first sampling from the empirical
joint distribution (i.e. a heldout split of the dataset), then overriding
zi to a value selected uniformly from one of these regimes. Users
answered two questions for each dimension i , and received the
correct answer as feedback.

For the visualization, which is the sole task component depen-
dent on the model, we tested two versions of the task, one using
latent traversals and the other using synthetic exemplars, as de-
scribed in Section 2.2. For traversal visualizations, for 5 randomly
sampled values of z, we plotted x values corresponding to over-
riding zi to 7 linearly spaced values between “Low” and “High”
as defined above. For exemplar visualizations, we showed “Low,”
“Medium,” and “High” bins with 8 examples each. Both of these
visualizations force users to generalize from finite samples, which
can lead to ambiguities if randomly sampled z are not diverse. To
mitigate this potential problem, we provided users with a “Show

More Examples” button. Screenshots for the single-dimension task
on the dSprites dataset are shown in Figure 4.

4.6 Single-Dimension Metrics
We recorded several performance metrics specific to the single-
dimension task:

• Correctness rate: For each model, we measured the per-
centage of questions the participant answered correctly.

• Self-reported confidence: For each model, we measured
whether users agreed with the statement “I’m confident I’m
right” on a 5-point Likert scale.

• Self-reported understanding: Similar Likertmeasurement,
but for “The dial makes sense.” (We referred to dimensions
as “dials” in the interface.)

In addition to these task-specific metrics, we also recorded response
time and self-reported difficulty with the SEQ, which were shared
in common with interactive reconstruction.

5 STUDY METHODOLOGY
With implementation decisions now specified, we describe the
four studies we ran, two larger-scale studies on MTurk and two
smaller-scale lab study sessions (see also Figure 5 for a graphi-
cal depiction). All experiments began with a consent form, a tu-
torial, and practice questions on an easy example. Experiments
were deployed on the web and are available at http://hreps.s3.
amazonaws.com/quiz/manifest.html. Code for our study is available
at https://github.com/dtak/interactive-reconstruction.

5.1 Experimental Design
5.1.1 Synthetic Think-aloud Pilot. We began by running a small pi-
lot study with N = 3 users (referred to as U1, U2, and U3) to test out
each possible task on the dSprites and Sinelines synthetic datasets
(interactive reconstruction, single-dimension with exemplars, and
single-dimension with traversals), with each user completing two
of the six task/dataset conditions with two of the six models (drawn
randomly without replacement to ensure complete coverage). Par-
ticipants were asked to think aloud and describe their strategies for
solving each problem. Interviews were recorded and transcribed,
and the feedback was used to make minor clarifying changes to the
interface.

5.1.2 Synthetic MTurk Study. We then ran a larger version of the
synthetic dataset study on MTurk, where each participant (N = 15

http://hreps.s3.amazonaws.com/quiz/manifest.html
http://hreps.s3.amazonaws.com/quiz/manifest.html
https://github.com/dtak/interactive-reconstruction
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Figure 4: Screenshots of the dSprites single-dimension task (left), showing ground truth visualizations with exemplars (center)
and traversals (right).

Ground-truth No ground-truth

dSprites

GT

Timeseries

VAEAE GTVAEAE

N=3 In-person pilot (quotes)

N=90 MTurk Study, 3 models/user N=105 MTurk Study, 1 model/user

MNIST

GTVAEAE

N=10 In-person thinkaloud
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One model per user

Synthetic MTurk Study (N=90)
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Single
Dimension,
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Compare AE/TC/SS at 5D, 10D

Diagram of Experiments

GT

VAE

AE

Figure 5: Diagram of experiments performed (except the
small synthetic pilot). On synthetic datasets, experiments
were designed to evaluate the best task (assuming the best
model). On MNIST, experiments were designed to evaluate
the best model (assuming the best task).

per dataset and task, and N = 90 total) completed one of the six
possible dataset/task conditions, but for all three models (AE, VAE,
and GT, with the order randomized). To keep overall quiz length
manageable, Nq was set to 5 for interactive reconstruction and
10 for single-dimension tasks (that is, 2 questions per dimension).
Differences were analyzed with repeated-measures ANOVA and
paired t-tests.

5.1.3 MNIST Think-aloud Study. We next ran a think-aloud study
with N = 10 participants on MNIST, testing out a wider variety
of models but only for the interactive reconstruction task. Each
participant (whomwe refer to as P1-10) completed interactive recon-
struction for three models (AE, TC, and SS, order drawn randomly
without replacement), with odd and even-numbered participants
working with 5D and 10D representations respectively. Model-
specific stages ended after 7 questions had been completed or 10
minutes had elapsed. After each stage, in addition to the single
ease question [62], users entered raw NASA-TLX scores [31] and
answered Likert scale questions about whether they felt they un-
derstood representation dimensions. Differences were analyzed
with repeated-measures ANOVA and paired t-tests. During each
stage, users were also encouraged to label dimensions if possible
and continuously describe their impressions of the task, which we
recorded.

5.1.4 MNIST MTurk Study. Finally, we ran a large-scale MTurk
study onMNIST. Aswith the synthetic dataset study, we hadN = 15
participants per condition (forN = 105 participants total). However,
instead of showing all models and varying the task, we limited the
task to interactive reconstruction and varied the model, specifically
showing each participant one of AE5, VAE5, IG5, TC5, SS5, AE10,
or SS10. Nq was increased from 5 to 7 for additional signal and to
make the task sufficiently long. Differences were analyzed with
one-way ANOVA and independent t-tests.

5.2 Recruitment
5.2.1 Think-aloud Studies. For our think-aloud studies, we recruited
undergraduate and graduate students from computer science mail-
ing lists at an academic institution, and compensated participants
with Amazon gift cards ($15/hour for synthetic pilot study sessions,
which we increased to $20/hour for MNIST to incentivize recruit-
ment for a larger study). We recruited N = 3 participants for the
synthetic pilot and N = 10 for MNIST.

On the synthetic datasets, two participants were male, one was
female, and all were graduate students. On MNIST, two were male,
eight were female, three were undergraduates, and seven were
graduate students. All participants in both studies were aged 18-34.
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5.2.2 MTurk Studies. For each MTurk experimental condition (6
for synthetic datasets and 7 for MNIST), we recruited N = 15
participants on Amazon Mechanical Turk with unique worker IDs.
This translates to a total of 90 participants on the synthetic dataset
study and 105 participants for the MNIST-based study.

For single-dimension tasks, participants were excluded if they
answered practice questions incorrectly. For traversal visualiza-
tions, the retention rate was 71%, while for exemplars, it was 91%.
For interactive reconstruction, we included all participants who suc-
cessfully completed the study on synthetic datasets (as users could
not proceed past the practice questions without answering them
correctly), but added an additional inclusion criteria on MNIST
requiring participants to have reconstructed at least one of seven
instances successfully. We adopted this criteria in part because we
noticed several participants did not realize they could use radio
buttons (which were not included in the practice questions) on the
IG and SS tasks (never changing them during any question), and in
part to filter out users who gave up completely on extremely hard
models (e.g. the 10D AE). Retention rates were highest (88%) for the
SS10 model and lowest (42%) for the AE10, with an overall average
of 67%. In total, 156 participants were needed to get 105 retained
participants on MNIST and 115 participants were needed to get 90
retained participants on synthetic tasks.

Compensation was set with the intention of ensuring that ac-
tively engaged MTurk users would earn at least $15/hr, with time
estimates based on pilot experiments and interactive reconstruction
time limits. On the synthetic datasets, users were paid $6 for both
single-dimension and interactive reconstruction tasks, which took
an average of 13 minutes ($27/hr). The interactive reconstruction
experiments took a slightly longer average of 18 minutes ($20/hr),
with 95% of participants finishing under 34 minutes ($11/hr). For the
MNIST dataset, users were paid $3.75 for completing tasks, which
took an average of 15 minutes ($15/hr), with 80% of participants
finishing under 20 minutes ($12/hr) and 95% finishing under 38
minutes ($6/hr).

Demographic information was recorded in a post-quiz question-
naire. In the synthetic study, participants were generally young
(58% between 18-34), North American (68%, with most others from
Asia or South America), college-educated (79% had Bachelor’s de-
grees or above) and male (64%), with gender recorded per guideline
G-4 of [63]. Demographics were similar on MNIST (49% aged 18-34,
59% North American, 71% male, and 81% with Bachelor’s or above).

6 RESULTS
Since the think-aloud and MTurk study participants worked with
the same datasets and completed similar or identical tasks, we will
first present results from all the synthetic dataset studies and then
move on to results from the MNIST dataset studies. Adding up
ANOVAs and t-tests across all our experiments and pairs of models,
we ran 435 statistical tests, giving us a Bonferroni-corrected thresh-
old of 0.00011 for an initial α of 0.05. Means, standard deviations,
and pairwise p-values for all metrics across all experiments are
given in Section A.3 of the Appendix.

6.1 Synthetic Study Results
6.1.1 MTurk, Interactive Reconstruction. As shown in Figure 6, the
interactive reconstruction task clearly differentiated ground
truth (GT) models from AEs. Completion rates were signifi-
cantly different on both dSprites (F2,28 = 32.3,p<0.0001) and
Sinelines (F2,28=23.4,p<0.0001) in the directions we hypothesized.
GT model completion rates on both dSprites (.75±.26) and Sine-
lines (.83±.19) were significantly higher than AE completion rates
(.15±.19, t14=8.5,p<0.0001 on dSprites and .34±.26, t14=6.4,p<0.0001
on Sinelines). VAE models, though only marginally significantly
different, were in the middle (.51±.33 on dSprites and .63±.28 on
Sinelines). These results closely mirror the disentanglement metrics
in Figure 2.

We also saw significant differences in self-reported difficulty
(F2,28 = 32.3,p<0.0001 on dSprites, F2,28=11.7,p=0.0002 on Sine-
lines) and error AUC (F2,28=31.6, p<0.0001 on dSprites, F2,28=14.1,
p<0.0001 on Sinelines). Between AE and GT models, these differ-
ences were large and least marginally significant. VAEs were no
longer exactly in the middle, however. Instead, they more closely
matched the AE model on dSprites and the GT model on Sinelines—
e.g. for difficulty, average scores for the AE, VAE, and GT were 6.9,
6.4, and 4.2 on dSprites vs. 5.9, 4.1, and 4.0 on Sinelines.

6.1.2 Think-aloud, Interactive Reconstruction. Interactive recon-
struction task users felt they understood GTmodels, did not
understand AEs, and partially understood VAEs in a way that
matched the disentanglement scores in Figure 2. On dSprites, U1
assigned meanings to GT model dimensions almost immediately,
noting on the first question that “[dial 1] is changing its shape, [...]
dial 2 is changing the size, [...] and then 3 seems like it’s changing
the rotation, and 4, probably x-position. And then 5 is y-direction I
guess?” For the AE, however, U1 “d[id]n’t understand what the dials
[we]re doing.” On Sinelines, U2 found the GT model “much easier
to figure out” than the AE, where it was “hard to tease out exactly
what each [dimension] is doing.” The difficulty of understanding
the AE model caused them to switch strategies from ”match[ing]
[dimensions] sequentially” (which they could do with the GT model)
and instead “look[ing] at the current alignment and then mak[ing]
sure that number is increasing” by ”tweak[ing] the dials and see[ing]
what happens.”

Users partially understood VAEs. On the Sinelines VAE, U2 re-
ported they could “quickly figure out” there “was one dial that [con-
trolled] slope” and another that “did [vertical] translation”, but that
“squiggliness” was ”quite hard.” These reports match the depen-
dence plots in Figure 2, which show that the Sinelines VAE dis-
entangled linear slope and intercept from sine wave parameters.
On the dSprites VAE, U1 felt “dials 1, 2 and 3 are more predictable”
after determining “dial 3 is changing the size” while “dials 1 and 2
are moving the object in the diagonal way.” These comments again
matched the dependence plots in Figure 2, which suggest position
and size are controlled by VAE dimensions 1-3, while shape and
rotation are controlled by dimensions 4-5. However, U1 did find the
“diagonal” relationship (which was also nonlinear) confusing, which
forced them to randomly experiment more within each group of
dimensions. In contrast, for U2, linear slope and intercept were
disentangled both from sine wave dimensions and each other. This
difference may explain why, relative to the GT, VAEs had higher
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Figure 6: Boxplots of MTurk dependent variables across the 15 participants for each synthetic data task condition. Blue trian-
gles indicate means, black lines indicate medians, and stars indicate p-values for differences between means (****=p<0.0001,
***=p<0.001, **=p<0.01, *=p<0.05). Expected differences between AE and GTmodels emerge clearly from interactive reconstruc-
tion results, but not single-dimension results. The same results are repeated as tables in Table A.3 of the Appendix.

MTurk difficulty ratings and error AUCs on dSprites than Sinelines
(despite having similar DCI scores).

6.1.3 MTurk, Single-Dimension. The single-dimension task did
not clearly differentiate models. In the MTurk results, no differ-
ences in anymetrics were significant atα = 0.00011, though correct-
ness rates for the exemplar-based version of the task were closest
(F2,28=5.8,p=0.008 for dSprites and F2,28=6.6,p=0.005 for Sinelines,
though the most significant relationships were in the wrong direc-
tion). Response time and self-reported confidence/understanding
were almost identical across models, datasets, and visualizations.
On dSprites, we did observe that GT models had higher correct-
ness rates (.75±.14) and lower difficulty ratings (4.0±1.6) than AEs,
which had .61±.18, p=.01 for correctness and 5.3±1.3, p=.03 for dif-
ficulty (on exemplars). However, on Sinelines, AEs actually emerged
with the highest average correctness rates in the exemplar-based
MTurk study (AE=.81±.15 vs. GT=.65±.11, p=0.003), as well as
the lowest difficulty (AE=4.5±1.6 vs. GT=5.3±1.5, p=0.003). Our
qualitative results below (as well as the dimension-by-dimension
correctness rate breakdown in Figure 7) suggest this is not because
users understood the AE, but because of helpful AE pathologies
and unhelpful GT symmetries.

6.1.4 Think-aloud, Single-Dimension. Users performed the task
without trying to understand the model. Although U1 initially
tried to formulate “hypotheses” about the meanings of dimensions,
they found these “irrelevant for [them] to make decisions.” U2 de-
scribed their strategy as “match[ing] directly” without trying to
“tease apart the different dimensions,” and P3 called it “blind trust” in
“visual matching.”

Visualization pathologies also biased the results in directions
unrelated to understanding. On Sinelines, we noticed a lack of
diversity in “High” and “Low” samples from AEs, which sometimes
made thematching problem trivially easy for all participants. For GT
models, we also noticed questions for particular were pathologically
hard due to symmetries in the generative process. One example
is that for the rotation feature on dSprites and the phase feature
on Sinelines, “Low” values near 0 and “High” values near 2π were
nearly indistinguishable. For GT models on Sinelines, participants
also found it hard to detect changes in amplitude at low frequencies,
as these could be alternately explained by slope, and harder still
to detect changes in frequency at low amplitudes, as near-linear
examples were effectively unaltered.

6.1.5 Exemplars vs. Traversals. Though not central to our narra-
tive, we found some evidence that exemplars may have been more
effective than traversals for single-dimension performance. U3,
who completed versions with both visualizations, reported that the
task was easier with exemplars because seeing instances clustered
into bins “visually help[ed them] understand the three categories,”
whereas with the traversal visualization, it was necessary to “men-
tally create” those categories by imagining spatial “divisions.” U3
also hypothesized it was easier for them to detect patterns on the
right-hand side of traversal visualizations due to their experience
“reading from left to right,” which they were concerned might in-
troduce “a bias” in their answers. We see such evidence of spatial
bias in Figure 7, whose bottom-left plot shows that MTurk users
struggled to answer traversal questions about dSprites x-position,
where the movement of the shape was in the same direction as the
movement of the images, but answered questions about y-position
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Figure 7: AE and GT correctness rates by representation
dimension for MTurk single-dimension tasks. Dots show
means with standard errors, x-axis shows GT dimensions
(AE order is arbitrary). Compared to AEs, some GT dimen-
sions had much lower or higher correctness rates than oth-
ers, rising to near 100% for attributes like shape, scale, and
slope and falling to near 33% (the rate of random guess-
ing) for others, especially periodic attributes like rotation
and phase. These differences suggest that questions about
certain conceptually simple dimensionswere pathologically
difficult to answer from static visualizations.

almost perfectly, where the movement of the shape was orthogonal
to the movement of images. Meanwhile, accuracy on these ques-
tions for exemplars (top-left plot) was intermediate in both cases,
showing less negative bias for x-position though also less positive
bias for y-position. Overall, these results suggest that visualization
details matter for performance, but also that it may be better to
utilize time rather than space when visualizing changes in spatial
features, which is effectively what occurs with interactivity.

6.2 MNIST Study Results
6.2.1 MTurk, Interactive Reconstruction. As shown in Figure 8, In-
teractive reconstruction metrics clearly distinguished mod-
els, especially AE vs. SS. In general, we found significant dif-
ferences between models (F28=4.7,p=0.0003 for completion rate,
F28=4.9,p=0.0002 for difficulty, and F28=11.4,p<0.0001 for error
AUC), with the sharpest pairwise contrasts being significant or
nearly significant differences between AE and SS models. For ex-
ample, at 5D for the AE vs. SS, completion rates were 0.38± 0.23 vs.
0.72 ± 0.24 (t28=−3.9, p=0.0006), subjective difficulty was 5.6 ± 1.6
vs. 3.4 ± 1.5 (t28=3.7, p=0.001), and error AUC (given in units of
1000s for conciseness) was 15.7±4.3 vs. 6.3±4.7 (t28=5.5,p<0.0001).
The next-best performing model was the β-TCVAE (TC), with an av-
erage completion rate of 0.61±0.27, subjective difficulty of 5.0±1.5,
and error AUC of 16.0± 14.0. Although the average error AUC was
higher for the TC model than the AE, this was largely due to a small
number of extreme outliers (note the high variance). Comparing
medians, we have 10.5 for the TC model and 14.5 for the AE model,
which matches the overall trend of AE < TC < SS. Results for the

IG and especially the VAE were generally slightly worse and closer
to AE performance.

Performance degraded when increasing dimensionality,
but not as badly for methods thought to be interpretable.
When we increased Dz from 5 to 10, average completion rate fell
(0.38→0.35 for the AE, 0.73→0.71 for the SS), error AUC rose
(15.7→47.8 for the AE, 6.3→7.6 for the SS), and subjective diffi-
culty generally rose (3.4→4.4 for the SS, though it fell slightly from
5.6→5.3 for the AE), though none of these results were near sig-
nificance except the AE’s increase in error AUC (t=−3.7, p=0.002).
Examining medians, however, we find that median completion
rate fell dramatically for the AE (3/7→1/7, the minimum possible
value for retention), while for the SS it actually rose (5/7→6/7),
suggesting that degradation from increasing dimensionality was
more drastic for the AE than the SS.

6.2.2 Think-aloud, Interactive Reconstruction. Multiple sources
of evidence suggest users understood the SS well and the AE
poorly. The first source is subjective measures, which are plotted
in Figure 9. Though not always significant at N = 5, they suggest
not just that the difficulty and cognitive load of the task varied
across models (with AE generally rated hardest and SS easiest),
but also that dimension understandability varied in the same way,
e.g., with SS rated most understandable at 5D with 3.6±0.5 and AE
rated least understandable with 1.4±0.5 (t4=11.0, p=0.0004). When
increasing Dz to 10, frustration grew and subjective understanding
of SS models fell (to 2.4±0.5, t4=6, p=0.004), but relative differences
remained fairly consistent.

The second source of evidence is agreement between user-entered
dimension labels, shown for Dz = 5 in Figure 1. On average, only
20% of users were able to assign labels to any AE dimensions, but
100% were able to do so for at least one SS or TC dimension, with all
dimensions at Dz = 5 and many at Dz = 10 having at least 80% cov-
erage. Additionally, for many SS dimensions, these independently-
assigned labels agreed closely. TC model labels were less consistent,
suggesting more entanglement with the digit.

The third source of evidence is users’ verbal descriptions. None
of the 10 participants made any comments indicating that they
found the AE comprehensible, with P3 commenting that “the dials
didn’t have any discernible meaning”, and P8 concluding that “the
meanings of the dials aren’t helpful in this one for solving the problem
most efficiently.” In contrast, 9/10 participants felt that the SS model
was “the easiest to understand and label” (P3), with 100% agreeing
it was more comprehensible than the AE. This was in large part
“because it [...] let you choose the number” (P4, with all participants
commenting on this in some manner), though 8/10 participants also
expressed that the continuous dimensions were at least partially
understandable. For example, P1 noted that they “understood what
most of the dimensions were doing, especially rotating.” However,
unlike with the synthetic GT models, no participants claimed com-
plete understanding; for example, P4 felt “there were some dials that
were easy to tell, but there were others that were more obscure.”

The TC model consistently fell between the others, with 8/10
commenting that it was more comprehensible than the AE, and 9/10
commenting that it was less comprehensible than the SS. Subjective
descriptions varied; compared to the AE, P9 felt able to “understand
and write down and remember” what TC dials meant, despite being
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Figure 8: Boxplots across the 15 MTurk participants for each MNIST model, for dependent variables that were significant in
the synthetic tasks. Blue triangles indicate means, black lines indicate medians, and stars indicate significance as in Figure 6.
As with the qualitative studies, semi-supervised (SS) models performed best by each measure, while standard autoencoders
(AE) performed near the worst, especially at higher representation dimensions (right). Pairwise comparisons can be found in
Figure A.11 of the Appendix.

Figure 9: Subjective measures for the MNIST think-aloud study (means ± standard deviations). The first four measures are
NASA-TLX scores [31], the fifth is users’ subjective agreement (from 1-5) with the statement “I understood what many of the
dimensions meant,” and the last is a single ease question (SEQ) [62] assessment of difficulty from 1-7. Users rated SS models
easiest across allmeasures, though for higherDz , subjective understandabilitywas lower, frustrationwas higher, and perceived
performance gaps were greater. An alternate presentation can be found in Figure A.11 of the Appendix.

“worried” that “the framework [they] built might not be accurate.” P7
felt they could “understand physically” what certain dimensions
were “trying to do” but had trouble expressing it verbally; they
described it as being like a “matching game” where “you know what
you mean but there’s not an agreed upon word for it.”

Differences in understanding led to differences in strat-
egy. When users understood dimensions, they used that under-
standing to perform the task more efficiently. On the SS model, P5
“used the dials that [they] understood first” and “had an idea of which
way to move” them, while P8 felt it was “pretty easy to know which
[SS] dial to pick.” P7 was able “to be intuitive” when they “could
figure out what the dials meant.” P1 even felt a degree of mastery,
saying that for the SS model, they “had it down to a more exact
science.”

In contrast, when users did not understand dimensions, they
gravitated towards an inefficient but less cognitively taxing strat-
egy similar to gradient ascent. P3 described this strategy as trying
to “watch one slider and look at the alignment number of see if it
reaches a local max,” with some participants “proceeding through
dials one at a time” (P10) and others selecting them in “a very ran-
dom order” (P8). Users generally did not generally want to resort
to this strategy; for the AE, P9 started off by putting in significant
effort “trying to see if [they] could find any understanding of what

the dials meant” but “it didn’t work,” and with reluctance, their
“strategy changed” to “finicking with the dials.” However, P8 felt that
for complicated models, the gradient ascent strategy was actually
“less mentally demanding” because “not even trying to figure out”
dimension meanings meant the task was sufficiently mindless that
they could “do something else at the same time,” such as “hold a
conversation.” Users felt this was inefficient, with P2 commenting
that “this is definitely not the fastest strategy,” but when “there wasn’t
any easy way to define anything [...] to do it systematically feels re-
ally annoying” (P8). These comments may help to explain why the
differences in subjective measures of effort were less significant
than differences in frustration, understanding, and performance.

7 DISCUSSION
As shown in Figure 6 and Table 2, interactive reconstruction
metrics differentiated entangled and disentangled models,
both absolutely and relative to baselines. On both synthetic
datasets, these metrics (specifically completion rate, difficulty rat-
ing, and error AUC) clearly distinguished the entangled AE from the
disentangled GTmodel. Single-dimension task metrics, on the other
hand, showed a much less clear relationship with disentanglement,
sometimes predicting that the highly entangled autoencoder was
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Model Dimension User-Assigned Labels

AE5

Continuous 1 "791"
Continuous 2 "thickness"
Continuous 3 "rotate"
Continuous 4 "stretch"
Continuous 5 —

TC5

Continuous 1 "thickness", "0-1", "closedness", "2-0"
Continuous 2 "shrinking horizontally", "paint white", "0-1"
Continuous 3 "diagonal", "rotate", "4-5-3"
Continuous 4 "add bottom left", "3-5-6", "3-5-blob"
Continuous 5 "ccw", "6-7", "7-6?"

SS5

Discrete 1 "number", "Digit", "Class", "digit"
Continuous 1 "up", "Widthish", "paint white", "rotate cw, change focus"
Continuous 2 "ccw", "LR Skew", "Rotation", "rotate", "skew rotate cw/ccw"
Continuous 3 "curve", "TB Skew", "up down bias", "focus up/dwn"
Continuous 4 "thickness", "Wide", "width", "horiz thickness somewhat"
Continuous 5 "left", "Thick", "paint black", "line thickness/focus but white"

Table 1: All labels assigned to Dz = 5 models by participants in the MNIST thinkaloud study. Bold text shows labels experi-
menters identified as consistent between participants. The semi-supervised (SS) model had both the most labels and the most
consistent labels, while the autoencoder (AE) had the fewest. Labels for Dz = 10 are given in Table A.4 in the Appendix.

Model Information Disentanglement Interactive Reconstruction
Dataset Model MSE DCI [24] MIG [19] Completion Rate Difficulty Error AUC/103 Link

dSprites
AE5 6.5 0.14 0.03 0.15±0.19 6.93±0.25 55.8±25.6 x

VAE5 8.1 0.40 0.09 0.51±0.33 6.20±0.91 60.1±26.6 x

GT5 8.9 1.00 1.00 0.75±0.26 4.20±1.60 23.6±5.9 x

Sinelines
AE5 0.6 0.21 0.03 0.34±0.26 5.87±1.67 163.5±90.0 x

VAE5 3.3 0.40 0.15 0.63±0.28 4.07±1.84 59.6±47.8 x

GT5 0.0 1.00 1.00 0.83±0.19 4.00±1.71 52.0±48.9 x

MNIST

AE5 15.5 — — 0.38±0.23 5.60±1.62 15.7±4.3 x

VAE5 16.2 — — 0.40±0.31 5.87±1.15 18.6±13.7 x

IG5 — — — 0.51±0.31 5.67±1.30 21.3±8.6 x

TC5 25.4 — — 0.62±0.26 5.00±1.41 16.0±13.1 x

SS5 20.8 — — 0.73±0.24 3.40±1.54 6.3±4.7 x

MNIST
AE10 7.2 — — 0.35±0.29 5.27±1.73 47.8±34.0 x

TC10 24.9 — — — — — x

SS10 20.7 — — 0.71±0.29 4.40±1.40 7.6±3.3 x

Table 2: MTurk interactive reconstruction metric means and standard deviations along with general metrics for each of the
models used in all experiments. Mean squared error (MSE) measures autoencoders’ errors reconstructing inputs not seen dur-
ing training. DCI and MIG are measures of disentanglement applicable to synthetic datasets. Bold entries indicate least error
/ greatest interpretability or disentanglement in each group. Links go directly to tasks for each model (skipping instructions).

more interpretable than ground truth. On MNIST, interactive recon-
struction metrics continued to meaningfully differentiate models
in a manner consistent with hypotheses from the disentangled rep-
resentations literature (e.g. β-TCVAEs especially semi-superivsed
β-TCVAEs were more interpretable than AEs and standard VAEs).

Interactive reconstruction metrics measured understand-
ing. This is a major claim, but our results suggest that performing
the task helped users understand models, and that understanding

models helped users perform the task. First, we know that after per-
forming interactive reconstruction, users felt they understood the
ground-truth interpretable models much more than unregularized
autoencoder models. On MNIST, where there was no GT model,
users held similar feelings towards the SS vs. the AE. Although
one could attribute these feelings to an illusion of explanatory
depth [61], that would not explain why user feelings were consis-
tent for the same pairs of models or why users assigned similar

http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=dsprites&skip_instructions=1&anonymized=1&models=conv_ae
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=dsprites&skip_instructions=1&anonymized=1&models=conv_vae
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=dsprites&skip_instructions=1&anonymized=1&models=conv_supervised
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=timeseries&skip_instructions=1&anonymized=1&models=fc_ae
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=timeseries&skip_instructions=1&anonymized=1&models=fc_vae
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=timeseries&skip_instructions=1&anonymized=1&models=supervised
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_ae_5
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_vae_5
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=infogan-6
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_tcvae_9.0_K5
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_semisupervised_vae_K-5_tc-9.0
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_ae_10
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_tcvae_9.0_K10
http://hreps.s3.amazonaws.com/quiz/index.html?viz=sliders&dataset=mnist&skip_instructions=1&anonymized=1&models=conv_semisupervised_vae_K-10_tc-9.0
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Figure 10: Changes in average MTurk interactive reconstruction metrics between the first and last (Nq − 1)/2 questions (error-
bars show standard error and are omitted on MNIST for readability). GT/SS models show the most consistent improvements
over questions (suggesting conscious effort / learning) while AEs sometimes show degradation (suggesting users give up).

labels to dimensions of models they felt they understood (Table 1).
It also would not explain evidence of learning across trials, e.g. why
performance increased most consistently for interpretable models
(Figure 10). Overall, the evidence suggests that users achieved mean-
ingfully different levels of model understanding by performing the
interactive reconstruction (and not the single-dimension) task.

Second, we found that when users felt they understood the mean-
ings of dimensions, they could modify them in a single pass through
the list, knowing in advance in which direction and how much to
change them. This allowed them to solve problems efficiently, lead-
ing directly to high completion rates and low error AUC. When
users did not understand dimensions, we found that they tended
to adopt less efficient gradient ascent or random experimentation
procedures with numerous loops through the full set of dimensions
(or a partial set, in the intermediate-understanding case).

A competing hypothesis could be that, rather than gaining un-
derstanding, users always used gradient ascent or experimented
randomly, but just happened to more easily stumble upon solutions
with the models we assumed were “interpretable” than the models
we assumed were “uninterpretable.” In certain cases, this effect may
be partially operative. For example, on MNIST, AEs consistently
have the lowest reconstruction error (shown in Table 2), implying
they can reconstruct a wider variety of images and therefore have
a larger “search space.” Meanwhile, TCs consistently have the high-
est reconstruction error (25.4 vs. 15.5 at Dz = 5) and therefore the
smallest search space, so randomly experimenting users ought to
happen upon solutions more quickly.

However, this hypothesis is at odds with our qualitative observa-
tions, and also conflicts with our quantitative results in many cases.
For example, on MNIST, the SS model has lower reconstruction
error (20.8 at Dz = 5) and thus a larger search space than the TC
model, but it performs much better. On Sinelines, the GT model has
precisely zero reconstruction error but still performs best. Although
having a smaller search space may be helpful (and arguably less
expressive models may often be easier to understand), we posit that
task performance depends more strongly on the understandability
of a search space, rather than its size.

Generalizability. It is worth emphasizing that interactive recon-
struction differentiated models in qualitatively similar ways across
multiple datasets (dSprites, Sinelines, and MNIST) and user groups
(workers on Amazon Mechanical Turk and students in Computer
Science). This consistency suggests that interactive reconstruction

can be useful as a research tool for comparing interpretable repre-
sentation learning methods in varied contexts. Some innovation
(beyond choosing appropriate parameters per Section 3.1) may
still be required to adapt the method to non-visual or discontin-
uous data modalities (e.g. audio, text, or medical records) or to
specific user groups in application-grounded contexts (per Doshi-
Velez and Kim [23]). However, while it is desirable for interpretable
representation learning algorithms to generalize to all contexts,
interpretability measurement tools can afford to be a little more
domain-specific, as long as they can still identify the algorithms
that output the most interpretable models across contexts.

Limitations. Interactive reconstruction has limitations not shared
by the single-dimension task which our experiments do not fully ex-
plore. First, these tasks require interactive visualization, which may
be technically challenging for practitioners to implement, though
the increasing usability of efficient web-based machine learning
frameworks [67] helps. Second, interacting with all dimensions
simultaneously may be overwhelming for models with many tens
or hundreds of representation dimensions. Potential workarounds
include allowing users to annotate, as with MNIST, and/or group
dimensions, or defining tasks over subgroups rather than the full
set. However, we note that 100D representations may be inherently
uninterpretable due to limits on working memory [69]—unless the
models are structured so that only sparse subsets of dimensions
need to be considered simultaneously.

Our task also requires setting several parameter choices sensibly.
For example, despite our initial pilots on MNIST, 8/10 think-aloud
study participants made at least one comment that our distance
metric, the intersection-over-union alignment percentage, did not
match their intuitive notion of perceptual similarity, with P3 com-
menting that sometimes the images “look similar but the alignment
[percentage] doesn’t reflect that.” Although it was uncommon for
users to reach the threshold alignment ϵ without feeling that the
images were similar, they felt frustrated that changes in d(x ,x ′)
seemed unrelated to progress early on. Although we feel confident
our method will generalize to many datasets and data types, our
experience suggests practitioners will need to take care when se-
lecting metrics d(x ,x ′) and thresholds ϵ . Future work could explore
choosing example-specific thresholds or, on visual data, using met-
rics explicitly designed to model perceptual similarity [21, 70, 73]
(if they can be evaluated efficiently in-browser).
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Finally, interactive reconstruction is specific to generative mod-
els, e.g. autoencoders and GANs. Single-dimension tasks, however,
can be made to support the other main category of representa-
tions, embeddings, via feature visualization [57]. Evaluating embed-
ding interpretability is an area for future work. Cavallo et al. [17],
Smilkov et al. [68], and Arendt et al. [5] may provide a foundation.

8 CONCLUSION
Developing reliable methods of evaluating interpretability is impor-
tant for progress in interpretable ML. In this study, we introduced
an interactive reconstruction task for evaluating the interpretabil-
ity of generative models, which have largely gone unstudied in
the growing literature on human factors in ML. We validated our
method by verifying it was effective at identifying ground-truth
differences in model interpretability—both absolutely and relative
to baselines—and that differences in objective performance metrics
corresponded to meaningful differences in subjective understand-
ing, which was measured in multiple independent ways. We then
applied it to a wide range of representation learning methods from
the disentanglement literature, and found evidence that methods
which have been shown to improve disentanglement on synthetic
data, e.g., [19], also improve interpretability on real data. To our
awareness, ours is the first study providing such evidence.
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A APPENDIX
A.1 Additional Model Details
In this section, we present additional background and details about
the representation learning models considered.

A.1.1 Loss Functions. Autoencoders [2] (AEs) are trained simply
to compress and reconstruct x :

LAE(x) = L(x , dec(enc(x))),

where L is an individual example reconstruction loss. We used
cross-entropy (Bernoulli negative log-likelihood) for dSprites and
MNIST and mean-squared error (Gaussian negative log-likelihood)
for Sinelines.

Ground-truth models (GTs) are trained equivalently to the au-
toencoder, except we omit the encoder and instead provide ground-
truth factors z alongside x :

LGT(x , z) = L(x , dec(z))

Note that on Sinelines, we did not actually train the GT model
because in that case, it was simple to implement in closed form. It
might have been possible to implement the GT dSprites model this
way as well, but since the original generating code is not available
in the dataset repository [54], we opted for a model.

Variational autoencoders [41] (VAEs) are similar to autoencoders,
except that enc(x) outputs not a single value, but a distribution
over z. The VAE training objective includes an expectation of the
reconstruction error over this distribution, as well as a regulariza-
tion term meant to ensure that enc(x) stays close to a prior p(z) (in
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our case, an isotropic unit Gaussian):

LVAE(x) = Ez∼enc(x ) [L(x , dec(z))] + KL(enc(x)| |p(z))

Note that the expectation is generally approximated in training
with a single sample.

β-total correlation autoencoders (β-TCVAEs, abbreviated further
to TC) [19] are identical to VAEs, except that an additional penalty is
applied to the total correlation between representation dimensions:

LTC(x) = LVAE(x) + (β − 1)TC(enc(x)),

where for some joint distribution q(z), the total correlation TC(q(z))
is equivalent to the KL divergence between q(z) and the product
of its marginals, KL(q(z)| |

∏
j q(zj )). Penalizing total correlation re-

duces statistical dependence between dimensions and is thought to
improve interpretability. We use an approximation of this objective
developed by Chen et al. [19] but there are others, e.g. Kim et al.
[39]. For all experiments, we used β = 10.

Our semi-supervised (SS) variant of the β-total correlation au-
toencoder augments its encoded representation z with an additional
categorical dimension where we explicitly provide the class label y:

LSS(x ,y) = Ez∼enc(x ) [L(x , concat(y, dec(z)))]

+ KL(enc(x)| |p(z))
+ (β − 1)TC(enc(x))

By providing y as side-information during training, we effectively
disentangle digit identity from the continuous part of the represen-
tation z, making the SS slightly more similar to ground-truth (even
though there is no complete ground-truth for MNIST, the dataset
we consider). The SS model’s representation of digit style may still
be entangled, but hopefully less so than other models (as the SS
model still employs all the same tricks as the TC model).

Finally, InfoGAN [20] (IG) is a generative adversarial network
[28] trained to reach equilibrium between two losses: a discrimina-
tor attempting to distinguish real from fake images, and generator
attempting to create images x that fool the discriminator from a
latent code z (with maximal information between “interpretable”
components of z and the generated image). We refer to the original
citation for more details [20].

A.1.2 Training Details. All autoencoder models are trained in Ten-
sorflow with the Adam optimizer [40], with a batch size of 64 or
128 (for MNIST vs. others) and for the minimum number of epochs
necessary to surpass 100,000 iterations. Matching Burgess et al. [14],
the learning rate was set to 0.0005 for dSprites and its Tensorflow-
default value of 0.001 for MNIST and Sinelines. InfoGANs were
trained using an implementation from the Tensorpack library [72].
See https://github.com/dtak/interactive-reconstruction for code.

A.2 Distance Metrics and Thresholds
In this section, we describe our choices of distance metric d(x ,x ′)
and threshold distance ϵ for each of the three datasets. In general,
for all three datasets, we used metrics that measured the fraction
of disagreeing dimensions, with dataset-specific definitions of dis-
agreement.

A.2.1 Sinelines. For Sinelines, we defined distance as the fraction
of inputs that disagreed by more than 0.5 (approximately 2% of the

range of x ):

dSinelines(x ,x
∗) ≜

1
64

64∑
i=1

1(|xi − x∗i | > 0.5) (1)

This metric has the advantage of being between 0 and 1, which
allows us to visualize users’ proximity to solving each problem
with a progress bar (after subtracting the distance from 1). We set
the threshold distance value ϵ to 0.1 (which we visualized as a 90%
agreement target).

A.2.2 dSprites. For dSprites, a BW image dataset where a large
fraction of pixels are always within almost any threshold value due
to black backgrounds, we instead used L1 distance normalized by
the total difference away from black backgrounds (which corre-
sponds to Bray-Curtis similarity [9], and can be seen as a relaxation
of intersection-over-union):

ddSprites(x ,x
∗) ≜

∑
i |xi − x∗i |∑
i |xi | + |x∗i |

(2)

We again used the threshold of ϵ = 0.1 and visualized progress in
terms of a 90% alignment target.

A.2.3 MNIST. For MNIST, we initially tried the same distance met-
ric as with dSprites, but found in pilot experiments that the soft
relaxation of intersection-over-union led to confusing behavior
with highly regularized architectures like the β-total correlation au-
toencoder, which often have relatively gradual transitions between
black and white portions of generated images. Instead, we opted to
binarize autoencoder outputs in our visualization and use an exact
intersection-over-union similarity metric:

dMNIST(x ,x
′) ≜ 1 −

∑
i ⌊xi ⌉ ∧ ⌊x ′i ⌉∑
i ⌊xi ⌉ ∨ ⌊x ′i ⌉

, (3)

with a threshold of ϵ = 0.25 (visually presented as an alignment
target of 75%). We chose this threshold by asking pilot users to
align x and x ′ without a target threshold and verbally indicating
when they felt they were “far away” vs. “close enough,” and then
finding a value that consistently separated those two states across
examples.

A.3 Full Tables of Results
As an alternative to the plots in the main paper, we present results in
tabular form in Table A.3 as well as heatmaps of pairwise differences
in Figures A.11 and A.12. Note that synthetic result tables include
a redundant post-task measure of difficulty, which we opted not to
include (though it gives similar results) due to comments during
the think-aloud study and from MTurk users that it was easy to
forget the first model by the end of the quiz.

A.4 Additional Screenshots
In Figures A.13, A.14, and A.15, we show additional screenshots
for more tasks, models, and datasets. We also showcase the in-
structional practice questions, where users were shown a simple
“circles” dataset with just two factors of variation (radius and fore-
ground/background color). Note that all of the tasks are available
at http://hreps.s3.amazonaws.com/quiz/manifest.html.

https://github.com/dtak/interactive-reconstruction
http://hreps.s3.amazonaws.com/quiz/manifest.html
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dSprites Inter. Recon. AE VAE GT AnovaRM AE×VAE AE×GT VAE×GT

Difficulty (SEQ, 1-7) 6.93±0.25 6.20±0.91 4.20±1.60 p=7e-08 p=0.006 p=2e-05 p=8e-05
Difficulty (Post-Quiz, 1-5) 4.07±1.29 4.07±0.85 2.67±1.14 p=0.004 p=1.0 p=0.03 p=0.002
Error AUC / 1000 55.8±25.6 60.1±26.6 23.6±5.9 p=5e-06 p=0.3 p=0.0003 p=0.0002
Slide Distance 13.6±10.1 12.8±8.4 6.24±2.28 p=0.003 p=0.7 p=0.01 p=0.006
Response Time 80.6±47.2 97.2±103.0 48.8±23.4 p=0.08 p=0.5 p=0.006 p=0.07
Completion Rate 0.15±0.19 0.51±0.33 0.75±0.26 p=5e-08 p=0.0009 p=6e-07 p=0.003

Sinelines Inter. Recon. AE VAE GT AnovaRM AE×VAE AE×GT VAE×GT

Difficulty (SEQ, 1-7) 5.87±1.67 4.07±1.84 4.00±1.71 p=0.0002 p=0.002 p=0.0007 p=0.9
Difficulty (Post-Quiz, 1-5) 3.93±1.12 3.07±1.34 2.67±1.25 p=0.003 p=0.04 p=0.001 p=0.2
Error AUC / 1000 163.5±90.0 59.6±47.8 52.0±48.9 p=6e-05 p=0.002 p=0.0007 p=0.6
Slide Distance 7.52±3.43 4.56±2.32 5.77±3.28 p=0.05 p=0.03 p=0.2 p=0.2
Response Time 99.0±62.2 52.9±35.6 69.8±38.6 p=0.03 p=0.02 p=0.1 p=0.1
Completion Rate 0.34±0.26 0.63±0.28 0.83±0.19 p=1e-06 p=0.002 p=2e-05 p=0.006

dSprites SD (Exemplars) AE VAE GT AnovaRM AE×VAE AE×GT VAE×GT

Difficulty (SEQ, 1-7) 5.33±1.25 4.27±1.18 4.00±1.63 p=0.03 p=0.02 p=0.03 p=0.6
Difficulty (Post-Quiz, 1-5) 3.13±1.09 2.27±0.77 2.87±0.96 p=0.06 p=0.05 p=0.4 p=0.08
Response Time 16.9±6.4 16.6±8.6 15.3±7.5 p=0.8 p=0.9 p=0.4 p=0.7
“I’m confident” (1-5) 3.99±0.67 4.12±0.48 3.95±0.70 p=0.3 p=0.2 p=0.8 p=0.06
“Makes sense” (1-5) 3.86±0.73 4.01±0.55 3.80±0.95 p=0.3 p=0.1 p=0.7 p=0.2
Correctness Rate 0.61±0.18 0.76±0.14 0.75±0.14 p=0.008 p=0.009 p=0.01 p=0.9

Sinelines SD (exemplars) AE VAE GT AnovaRM AE×VAE AE×GT VAE×GT

Difficulty (SEQ, 1-7) 4.47±1.59 5.20±1.42 5.33±1.49 p=0.04 p=0.09 p=0.003 p=0.7
Difficulty (Post-Quiz, 1-5) 2.67±1.19 3.00±1.21 3.27±1.24 p=0.1 p=0.3 p=0.03 p=0.3
Response Time 12.5±4.8 14.0±5.5 12.4±4.9 p=0.5 p=0.3 p=1.0 p=0.4
“I’m confident” (1-5) 3.87±0.79 3.75±0.83 3.89±0.75 p=0.5 p=0.5 p=0.9 p=0.2
“Makes sense” (1-5) 3.73±0.95 3.77±0.84 3.73±0.84 p=1.0 p=0.8 p=1.0 p=0.8
Correctness Rate 0.81±0.15 0.67±0.11 0.65±0.11 p=0.005 p=0.02 p=0.003 p=0.7

dSprites SD (traversals) AE VAE GT AnovaRM AE×VAE AE×GT VAE×GT

Difficulty (SEQ, 1-7) 4.87±1.36 3.60±1.31 4.47±1.26 p=0.03 p=0.01 p=0.2 p=0.1
Difficulty (Post-Quiz, 1-5) 2.93±1.24 2.53±1.09 3.07±1.06 p=0.3 p=0.4 p=0.5 p=0.2
Response Time 16.8±11.7 14.3±7.9 17.2±12.9 p=0.5 p=0.3 p=0.9 p=0.3
“I’m confident” (1-5) 3.45±0.87 3.74±0.47 3.44±0.66 p=0.2 p=0.2 p=1.0 p=0.07
“Makes sense” (1-5) 3.37±0.93 3.61±0.58 3.41±0.79 p=0.4 p=0.2 p=0.9 p=0.2
Correctness Rate 0.56±0.19 0.73±0.20 0.60±0.19 p=0.03 p=0.01 p=0.5 p=0.08

Sinelines SD (traversals) AE VAE GT AnovaRM AE×VAE AE×GT VAE×GT

Difficulty (SEQ, 1-7) 3.67±1.78 4.93±1.69 5.00±1.15 p=0.01 p=0.04 p=0.03 p=0.8
Difficulty (Post-Quiz, 1-5) 2.53±1.15 2.87±0.96 2.87±1.20 p=0.5 p=0.3 p=0.4 p=1.0
Response Time 18.8±12.4 15.8±7.1 18.4±7.0 p=0.4 p=0.3 p=0.9 p=0.1
“I’m confident” (1-5) 3.95±0.73 3.69±0.76 3.73±0.67 p=0.06 p=0.05 p=0.09 p=0.7
“Makes sense” (1-5) 3.74±0.98 3.77±0.61 3.83±0.66 p=0.8 p=0.9 p=0.5 p=0.5
Correctness Rate 0.71±0.18 0.59±0.17 0.57±0.14 p=0.08 p=0.1 p=0.08 p=0.8

Table A.3: Full tables of results for the synthetic dataset MTurk study (as an alternative view to the boxplots in Figure 6 of the
main paper). Values on the denote means and standard deviations. p-values are for ANOVA with repeated measures (middle)
and paired t-tests (right). Results include a redundant post-task measure of difficulty, which we opted not to include (though
it gives similar results) due to comments during the qualitative evaluation that it was easy to forget the first model by the end
of the quiz.
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Figure A.11: Pairwise average differences in interactive reconstruction metrics between models (row minus column). Stars
indicate t-test p-values (****=p<0.0001, ***=p<0.001, **=p<0.01, *=p<0.05, paired for dSprites and Sinelines and unpaired for
MNIST). Differences were largest and most significant between autoencoders (AE) and disentangled ground-truth (GT) or
semi-supervised (SS) models (bottom-left or top-right corners in each plot or dark-line-delineated subgroup).
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FigureA.12: Pairwise differences in single-dimensionmetrics betweenmodels (rows, columns, and stars defined in FigureA.11).
Differences were smaller, less consistent with ground-truth disentanglement, and further from significance compared to in-
teractive reconstruction.

Model Dimension User-Assigned Labels

AE10
Continuous 1 "cross"
Continuous 4 "intensity", "0-1"
Continuous 7 "thickness"

TC10

Continuous 1 "numbers", "reflect but not really", "number?", "little"
Continuous 2 "x", "ignore", "nothing", "no"
Continuous 3 "thickness", "numb"
Continuous 4 "expands", "numb"
Continuous 5 "makes things thick", "thickness", "thicker"
Continuous 6 "x", "ignore", "nothing", "nothing", "no"
Continuous 7 "x", "ignore", "nothing", "nothing", "no"
Continuous 8 "tilt on center", "rotation", "orient"
Continuous 9 "squish into the center", "numb"
Continuous 10 "six", "stretch", "0"

SS10

Discrete 1 "Number", "Number", "number"
Continuous 1 "spirals", "lengthening", "width"
Continuous 2 "curviness", "y bubble"
Continuous 3 "x", "ignore", "nothing", "no"
Continuous 4 "thickness", "thick", "thickness", "thick", "thickness"
Continuous 5 "rotation"
Continuous 6 "x", "ignore", "nothing", "little"
Continuous 7 "x", "moves a thing", "no"
Continuous 8 "tilt", "squishes"
Continuous 9 "semi tilt", "rotation"
Continuous 10 "x", "migrates one thing", "nothing", "little"

Table A.4: All labels assigned to Dz = 10 models by participants in the MNIST thinkaloud study. Bold font shows labels ex-
perimenters identified as consistent between participants, with dimensions that had little effect on representations due to TC
regularization shown in gray. TC and SS models had more labels (and more consistent labels) than AEs.
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Figure A.13: Traversals (left), exemplars (middle), and interactive reconstruction (right) for practice question problem.

Figure A.14: Sinelines traversals for a random dimension of the AE (left), VAE (middle), and GT model (right).

Figure A.15: Sinelines exemplars for a random dimension of the AE (top), VAE (middle), and GT model (bottom).
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