
Visualizing Examples of Deep Neural Networks at Scale
Litao Yan

Harvard University
Cambridge, MA, USA

litaoyan@g.harvard.edu

Elena L. Glassman
Harvard University
Cambridge, MA, USA

glassman@seas.harvard.edu

Tianyi Zhang
Harvard University
Cambridge, MA, USA

tianyi@seas.harvard.edu

Figure 1: ExampleNet, an interface to explore the commonalities and variations in relevant neural network models built by
other GitHub developers: (1) a faceted browser to identify relevant models, (2) the distribution of various layers used by other
developers, (3) an overview diagram of various model structures, and (4) the distribution of hyperparameters used by others.

ABSTRACT
Many programmers want to use deep learning due to its superior
accuracy in many challenging domains. Yet our formative study
with ten programmers indicated that, when constructing their own
deep neural networks (DNNs), they often had a difficult time choos-
ing appropriate model structures and hyperparameter values. This
paper presents ExampleNet—a novel interactive visualization sys-
tem for exploring common and uncommon design choices in a
large collection of open-source DNN projects. ExampleNet provides
a holistic view of the distribution over model structures and hy-
perparameter settings in the corpus of DNNs, so users can easily
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filter the corpus down to projects tackling similar tasks and com-
pare design choices made by others. We evaluated ExampleNet in
a within-subjects study with sixteen participants. Compared with
the control condition (i.e., online search), participants using Ex-
ampleNet were able to inspect more online examples, make more
data-driven design decisions, and make fewer design mistakes.
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1 INTRODUCTION
In recent years, a particular form of machine learning (ML)—deep
neural networks (DNNs)—has gained a lot of attention. More and
more programmers nowwant to learn and tinker with deep learning
models, mainly through online tutorials and blogs [4]. As tutorials
and blogs tend to only include a few simple examples for illustration
purposes, programmers often struggle to identify appropriatemodel
architectures for their own usage scenarios. When seeing a specific
design choice in an examplemodel, they oftenwonder how common
this design choice is, how suitable is it for their own tasks and
datasets, and what other options are available.

In a formative study with ten participants, we found that most
participants (9/10) said they searched online for tutorials, blogs,
and example models when building their own models. However,
searching online often makes them feel overwhelmed because of
the enormous amount of online resources. All of them complained
about the difficulty of searching and navigating online examples to
find desired, relevant, easy-to-understand models. They expressed
their needs to understand the network structures and hyperpa-
rameters used by other developers on related tasks and datasets.
However, due to the tremendous resources available online, they are
unable to quickly search, navigate, and assess such neural network
design decisions using online search.

In addition to the information needs that these aspiring DNN pro-
grammers described to us in the formative study, we also consulted
relevant theory, i.e., Variation Theory [16], a theory about how hu-
mans effectively learn concepts, like “what is a DNN?” directly from
examples. Variation Theory suggests that, for every object of learn-
ing, there are critical dimensions of variation and critical values
along that dimension that learners need to discern. These critical
dimensions and values become discernable by showing examples
that are similar and different to it along these critical dimensions.
For example, an English speaker may be told that there are tones in
tonal languages that change the meaning of a word, but until they
hear two words that are identical except for the tone, they cannot
discern what the concept of a tone refers to. Similarly, they may not
be able to discern a particular tone until they hear multiple words
that share the same tone but vary in other ways. In the context of
building DNNs, they may need to see many similar and different
examples of DNNs to understand all the different dimensions (e.g.,
types of layers, sequences of layers, etc.) that they can play with
while constructing their own DNNs without it ceasing to be a DNN.
Once they can discern these dimensions of variation, they may also
want to anchor their initial choices on the common design choices
of others, while knowing that they can vary these choices at least
as far as the revealed uncommon choices.

Based on those identified information needs and the relevant
theory, we summarize three design principles. First, our system
should help users understand the relevance of any example DNN
to their own task. Second, our system needs to help users compare
and contrast DNN examples on the basis of the design decisions
they care about, e.g., model type and structure, hyperparameter
values for the network and individual chosen layers, etc. Third, our
system needs to help users see commonalities and variations of
these design choices over a large sample of available DNN examples.

In this paper, we introduce ExampleNet—a novel interactive visu-
alization interface that (1) provides users a holistic view to explore
common and uncommon design decisions, such as neural network
architectures and hyperparameters, in a large collection of deep
learning projects, (2) allows users to quickly filter a corpus of DNNs
down to a subset that tackles similar tasks, and (3) compare and con-
trast the design decisions made by other developers represented in
that corpus. The faceted browser (Figure 1 ①) in ExampleNet assists
users in quickly selecting and filtering by the model’s metadata. The
overview diagram of model structures (Figure 1 ③) aggregates and
aligns the structure of various models in a single view so that users
can compare and contrast the commonalities and variations of lay-
ers and their arrangement. ExampleNet also includes the summative
distribution of layer types (Figure 1 ②) for users to explore common
layers used by others. The distribution of hyperparameters (Figure 1
④) shows the different hyperparameter values from a large number
of models so that users can have a comprehensive understanding
of common and uncommon hyperparameter settings.

We conducted a within-subjects user study with sixteen DL pro-
grammers of various levels of expertise in computer vision and
natural language process. Participants were asked to complete two
DL tasks by using either online search or ExampleNet to design
neural network structures and hyperparameter settings. We found
that when using ExampleNet, participants (1) navigated more on-
line examples, (2) made more data-driven design decisions, such
as using more types of layers and hyperparameters, and (3) made
fewer design mistakes, e.g., leaving out an activation function or
loss function, setting the epoch to an unworkably large value, etc.
The value of ExampleNet is perhaps best described by some of the
participants themselves: “ExampleNet gives a summary of all models
for every specific machine learning task, and users can have a big
picture of the neural network construction choices.” (P3); “The visu-
alization of model architecture is also quite informative in showing
what are some common architectures shared across different projects,
while also shows how each network differs from one another.” (P7).

Our contributions are:
• A formative study that discovers the obstacles and needs of
DL programmers when designing a deep neural network

• An implementation of this interactive visualization for a set
of deep learning projects on GitHub

• A within-subjects user study that demonstrates the useful-
ness of ExampleNet to DL programmers when designing their
own neural networks

2 RELATEDWORK
2.1 Learning Barriers in Deep Learning
Cai and Guo did a large survey with 645 software developers about
their desire to learn ML and the learning hurdles they face [4].
They found that developers’ desire to use ML frameworks extended
beyond simply wanting help with APIs: “developers desired ML
frameworks to teach them not only how to use the API, but also
the implicit best practices and concepts that would enable them
to effectively apply the framework to their particular problems.”
This motivates our focus on high-level design choices of building
neural networks rather than low-level implementation details such
as API usage. In addition, they also found out that online tutorials
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and blogs often only offer a limited set of examples, falling short of
helping users identify an appropriate model architecture for their
own tasks. As a result, developers were left to make many design
decisions at their own discretion, e.g., “how many convolution
layers do I need?”, “what dropout rate or optimizer should I use?”.

Some other studies and surveys have also investigated program-
mers’ practice of applying machine learning. Amershi et al. did a
case study at Microsoft and found that AI is completely different
from traditional software applications [1]. For example, machine
learning applications have more complex data; model customiza-
tion and reuse require more complex skills; and AI components are
more difficult to process as separate modules. Yang et al. pointed
out that most non-experts simply use pre-trained ML models as
black-box tools and integrate them into their own applications,
which sometimes leads to difficult or unrealistic learning goals [30].
Patel et al. identified three major obstacles of applying ML as a
tool in software development, such as the difficulty of using ML in
an iterative and exploratory way [17]. Dove et al. [5]and Yang et
al. [29] probed the challenges that UX designers face in working
with ML. Both of them found that UX designers have difficulties
understanding ML, its capabilities, and its limitations.

2.2 Example-based Programming Learning
As the Internet accumulates a large volume of code and code-related
artifacts, many programmers now resort to online resources while
writing code [3, 20, 22, 28]. Sadowski et al. found that Google de-
velopers issued an average of 12 online code search queries per
weekday [20]. Brandt et al. observed that, when writing code, pro-
grammers typically started with searching for relevant tutorials
and then used the code examples in these tutorials as the scaffold
for their own implementations [3]. Head et al. proposed an interac-
tive approach that extracts runnable code examples from GitHub
projects [10].

Stack Overflow (SO) is a popular site for asking and answering
programming questions. Wu et al. surveyed SO users to investigate
the remaining barriers of programming when finding assistance on
the site. Among 453 respondents, 65% said they had to manually
adapt SO examples to fit their own usage scenarios, 44% found
some examples hard to understand, and 32% complained about the
low quality of some examples. Besides, Zhang et al. identified the
needs of API designers and discussed how community-generated
API usage data can be leveraged to address those needs [32]. The
results of our formative study on learning DL are highly consistent
with these previous findings: 1) participants always searched for
examples before building their own neural network models, and
2) participants found it difficult to identify desired information
from many search results and assess their relevance for their own
usage scenario. On the other hand, our participants expressed more
interest in finding out high-level design choices such as the model
structure, rather than learning low-level implementation details
such as how to make a particular API call.

2.3 Deep Neural Network Visualization
Many neural network visualization tools have been proposed to
support different activities in neural network development. Ten-
sorBoard [27] and Sony’s Neural Network Console [24] provide

visualizations for a single network and its layer parameters. They
are primarily designed to facilitate model training, providing dif-
ferent features to monitor the training process. Other visualization
tools, such as LSTMVis [26] and TensorFlow Playground [23], are
designed to increase the interpretability of a pre-trained model, by
visualizing the weight updates and hidden layers in the model.

ExampleNet differs from these visualization tools in three per-
spectives. First, unlike TensorBoard and Sony’s Neural Network
Console, which focus more on assisting users to debug and train a
better model, ExampleNet targets the model design phase, in which
developers can explore and discover various design choices of model
structures and hyperparameter settings. Second, these visualization
tools only represent a single model at a time. They do not allow
users to easily compare and contrast multiple models, let alone the
distribution of their design choices over an entire corpus of DNN
models. Third, visualization tools such as LSTMVis and Tensor-
Flow Playground visualize aspects of the model for interpretability
purposes. However, they do not render hyperparameter settings,
which are essential for beginners to design a runnable model.

2.4 Interfaces for Exploring Collections of
Code and Tutorial Examples

Previous work has explored different ways of visualizing large
collections of examples for D3 visualization [11], API usage exam-
ples [6], website design [13], and Photoshop tutorials [12]. Hoque
et al. [11] present an approach for searching and exploring differ-
ent visualization styles for a large number of D3 visualizations.
Similar to Hoque et al. ’s approach, the Adaptive Ideas Web design
tool [14] uses an example gallery for users to choose and adapt web-
site design ideas. Apart from these two interfaces, Delta [12] uses
thumbnail images to visualize the workflows in multiple PhotoShop
tutorials from different aspects. All of these interfaces visualize the
examples in a stacked and grouped view, which is hard to directly
compare and contrast the commonalities and variations of critical
aspects of DNNs, such as the sequence of layers. In ExampleNet,
we use a Sankey diagram to visualize each model side by side in a
single view, with the option to align similar layers across models.
In this way, users can have a bird’s-eye view of the common and
uncommon model architectures and how they differ.

To our best knowledge, Examplore [6] is the only work that
aligns and aggregates a large collection of examples in a single
view. Examplore uses a pre-defined code skeleton to visualize API
usage examples, which cannot be directly reused for visualizing
DNNs. It is difficult to define a particular skeleton that includes all
the various architectures. In ExampleNet, instead of designing such
a skeleton, we present a different approach—directly visualizing the
model structures in a Sankey diagram and using a local alignment
algorithm to further align them by layer types.

3 FORMATIVE STUDY
3.1 Participants
We conducted a formative study with 10 graduate students (6 fe-
males and 4 males) who have taken a deep learning class at Harvard
University. Three participants have more than five years of pro-
gramming experience, six have two to five years of programming
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experience, and one has one-year experience. As for machine learn-
ing experience, half of them have two to five years of experience,
three have only one year of experience, and two only have one
semester of experience. Nine of the ten participants have used Ten-
sorFlow before, and four of the ten participants have used PyTorch.
They have worked on different kinds of deep learning projects such
as image recognition, object detection, and natural language pro-
cessing. Participants were compensated with a $15 Amazon gift
card for their time.

3.2 Methodology
We conducted a 45-min semi-structured interview with each par-
ticipant. During the interview, we first asked about their learning
experiences with neural networks. Specifically, we askedwhat kinds
of neural network projects they have worked on, what kinds of chal-
lenges they faced, and what kinds of online resources they found
useful. We also asked whether and how often they searched for
examples when building neural networks, what information cues
they intended to discover from those examples, and what kinds of
difficulties they experienced.

Finally, we showed them TensorBoard [27], a popular neural
network visualization tool. TensorBoard visualizes neural network
layers and low-level computational operations such as additions of
tensors as a dataflow graph. All ten participants said they had used
TensorBoard before. We asked them what they liked and disliked
about TensorBoard and whether it can surface those information
cues they wished to discover from examples of neural networks.

During the interview, we encouraged participants to contextual-
ize their answers based on their recent experience of learning and
building deep learning models. Two authors coded participants’
responses to each question and then categorized them following
the card sorting method [15]. We synthesize our major findings in
the next section.

3.3 Participants’ Responses
3.3.1 Learning and Building Neural Networks. Programmers often
search and adapt example neural networks on GitHub rather than
building a neural network from scratch. Nine of ten participants
said the first thing they would do was to search for GitHub projects
that perform similar tasks on similar datasets. For example, P8
said, “when I need to process images, I will search CNN and other
keywords in GitHub, and identify similar projects to see what other
people have done with images.” When asked about how they decide
which GitHub project to follow or reuse, participants said they
cared the most about the relevance to their own tasks and datasets.
After they have decided on a GitHub project, they adapt the model
structure to fit their own data. P7 mentioned, “based on our data, we
may change our (network) structure and add few more layers behind
or in front of the original network.”

3.3.2 The Information Needs of Deep Learning Programmers. Ta-
ble 1 lists the common information cues our participants wished to
discover from GitHub examples when designing neural networks.
First, eight participants wished to get a holistic view of different
neural networks for similar tasks (N1, N5). P4 said, “when I searched
for models with the same task, I can only browse one example at a
time, and I cannot compare other related examples at the same time.”

In particular, five participants emphasized that they did not want to
investigate all projects returned by GitHub Search but only those
processing similar tasks and datasets as their own (N7). However,
it is cumbersome to assess the relevance of a GitHub project. P7
explained, “there is a project about some kinds of NLP tasks, but I
don’t know what kind of datasets they are using, or what kind of data
format. I have to search in the documents to look for the datasets.”
Hence, participants wished to have some tool support for distilling
information such as tasks and training data from GitHub projects
to help them make quick assessment.

Second, most participants expressed a desire to understand the
high-level design decisions in related models in GitHub (N2, N3,
N4, N6). Eight participants were interested in identifying the struc-
ture of neural networks (N2). However, it is difficult to identify
model structures from GitHub projects. P4 complained, “sometimes
there are thousands of lines of source code in several different files,
so you can barely have a clear overview of what the model looks
like.” Nine participants wanted to understand the “tricks” used by
other programmers to improve their model performance (N3). In
addition, participants wanted to compare the hyperparameters in
different models (N4) and identify the common choices made by
other programmers (N6).

Participants also mentioned several information cues such as
runnability and model accuracy, which are important for them to
decide which model to follow (N8, N9). Participants put more trust
in the design choices made within models with high accuracy. Yet
if a highly accurate model requires many GPUs and takes a lot of
time to train, they were less willing to follow and experiment with
the model. Finally, several participants wanted to know what kinds
of data preprocessing steps, e.g., standardization, one-hot encoding,
etc., were performed in the projects (N10).

3.3.3 The Challenges of Identifying Desired Information. When
asked about the difficulty of discovering those information cues,
seven participants said they were overwhelmed by searching and
navigating through related projects. P3 said, “sometimes [GitHub]
gives us too many other details that you will not use.” P4 added
that “the README files are so rough and do not describe what they
are doing in their repo.” Eight participants complained about the
difficulty of assessing the relevance and quality of GitHub projects
in the search results. P4 said, “even though we can sort the results
in GitHub, I still need to go through each result to further identify
whether it is related to what I am doing.” P8 said, “only looking at the
title or description [of a GitHub project] is not enough. I still need to
check the README file or read the code directly to know what exactly
they are doing.”

Four participants mentioned the difficulty of comparing and
contrasting different GitHub projects. P4 said that “after I found
a suitable example, I’m still not sure what other people will do. For
example, whether other people will use the same layer here, or whether
other people will use the same value of this parameter.” As a result,
participants found it difficult to decide which GitHub project to use.
P8 said “I don’t know which model is a better match for my task, and
there is no place to compare them.”

Four participants were concerned about the lack of runtime infor-
mation in GitHub projects. P5 said “I think building the environment
is the most difficult. Every time after you download a GitHub repo,
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Information Needs Participants
N1.What are different neural networks for similar tasks and datasets? P1, P2, P3, P4, P6, P7, P8, P10
N2. I want to quickly find out the structure of a model in a project. P1, P2, P3, P4, P6, P8, P9, P10
N3.What kinds of “tricks” (e.g., attention, dropout) have other programmers used? P1, P2, P3, P4, P5, P6, P7, P8, P10
N4. Is my hyperparameter setting similar to those in popular projects? P1, P2, P3, P4, P5, P6, P7, P8, P10
N5.What kinds of models are often used for specific datasets and tasks? P1, P2, P3, P4, P6, P7, P8, P10
N6.What are the common hyperparameters set by others? P2, P3, P4, P5, P6, P7, P8, P9, P10
N7. Do these projects use similar datasets and perform similar tasks as mine? P1, P2, P3, P4, P5
N8. Is this model runnable? How easy? What is the running environment? P1, P3, P7, P9, P10
N9.What is the accuracy of the model? How long does it take to train? P1, P2, P5, P10
N10. How do others pre-process their data before feeding to a model? P1, P2, P6, P7

Table 1: The common information cues that participants wish to discover

[you] need a lot of time to make it work. And it may take a week, or
two weeks longer depending on the environment it uses.”

3.3.4 What They Like or Dislike about TensorBoard. Seven of the
ten participants did not like TensorBoard. They pointed out two
main reasons. First, a lot of critical information they wished to
know about a neural network was not displayed in TensorFlow.
For example, P3, P4, and P6 all expected to see the task and dataset
information to assess the relevance of an example model to their
own goal. Second, the visualization in TensorBoard shows many
low-level operations that participants did not care about. P3 men-
tioned that “even some low-level operations such as addition and
matrix multiplication are represented in the graph.” On the other
hand, the other three participants liked TensorBoard, since it shows
the high-level structure of a neural network, such as layers and
activation functions. P9 said, "the flow is clear, and the structure
is very important to me. Compared with reading through thousand
lines of codes, this is much better." P3 also considered TensorBoard
helpful since “it distinguishes layers and functions in different colors
and blocks, making it easy for people to understand.”

4 DESIGN PRINCIPLES & SYSTEM OVERVIEW
4.1 Design Principles
We summarized three design principles for a system that supports
learning and designing neural networks, based on the information
needs of deep learning programmers identified in the formative
study and the Variation Theory [16]:
D1. Help users understand the relevance to their own tasks.
From the formative study, the information needs (N1, N5, N7)
indicate that DL programmers only care about projects that have
similar tasks and datasets to their own. For example, N7 represents
the user’s need to understand whether a neural network example
is related to the task they are facing. Furthermore, N1 and N5 both
indicate users are only willing to learn more about a neural network
example when they believe that the task to which the given example
belongs is highly relevant. Therefore, our system needs to provide a
way to help users quickly understand whether a project is relevant.
D2. Help users distill high-level design decisions. N2, N3, N5,
and N6 indicate that DL programmers want to understand high-
level design decisions such as model structures and hyperparam-
eters rather than low-level implementation details. In N2, users
want to know the information about model structures instead of

the implementation of models. And N3, N5, N6 are the needs of
users who want to know more about model types, hyperparameter
settings, etc. respectively. Therefore, our system needs to help users
easily perceive these high-level design decisions from the low-level
code in deep learning projects.
D3. Help users understand the commonalities and variations
of design choices. N4, N5, N6 all indicate that DL programmers
want to understand the common hyperparameters and model struc-
tures used for similar same tasks or datasets. Furthermore, N1, N3
indicate that users also want to find the variations in neural net-
work design. For example, some users want to know alternative
model types that handle similar tasks, and some users want to know
different tricks used by different developers. Therefore, our system
needs to support exploring both common and uncommon design
decisions in neural network design.

4.2 System Overview
Based on the three design principles, we implemented an interactive
visualization system called ExampleNet that helps programmers
explore various neural network design descions in a corpus of DNN
models. It contains three main features:

4.2.1 Faceted Browser. In the faceted browser view (① in Figure 1),
each facet displays the names of different datasets, tasks, and model
types. Through this faceted browser, users can quickly select and
filter the corpus of DNN models based on their own needs. The
distribution bar next to each facet shows the number of models
corresponding to each facet under different selection conditions.
Therefore, users can directly read the length of each bar to under-
stand how frequent or infrequent each option is, given their prior
selections. In addition, the faceted browser also renders quality-
related metrics such as project stars and forks. This allows users to
filter models based on these proxies for quality.

4.2.2 An Overview Diagram of Model Structures. The overview dia-
gram of model structures (③ in Figure 1) shows the large collection
of networks at scale. Since the structure of a neural network de-
scribes the order in which data flows between layers, we follow the
Sankey diagram design to aggregate the structures of various mod-
els in a single view. In our Sankey diagram, each flow represents
one or more models, and each node in the flow represents a layer.
Models are aligned based on the type and ordering of their layers.
Model layers with the same type in the same position are merged
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Figure 2: Align the structures of two models based on layer types

into a single flow. For example, in Figure 2(a), the first layers of
two models are both convolution layers, so these two convolution
layers are merged into a joint layer. In this way, users can compare
and contrast the commonalities and variations of layer choices and
arrangements among multiple models in a single view.

The traditional Sankey diagram design often produces a diagram
with many overlaps among flows when visualizing many neural
network models. The bifurcation and convergence of flows can
easily cause confusion. Therefore, we decided to adapt the tradi-
tional design to only contain the bifurcation structure without no
convergence. In Figure 2(a), our design renders the subsequent lay-
ers of two models as they are different. However, the traditional
Sankey diagram design will maximally merge these subsequent
layers, making the two flows intertwined with each other.

On the other hand, our adaption makes it difficult to identify
common subsequences of layers in relatively different positions
across models. In Figure 2(a), after the first joint convolution layer,
the subsequent layers of the two models vary only by one layer:
the second layer in the first model is ReLU, while the second layer
of the second model is Max Pooling. Though the second layers
are different, the following layers after the second layer are quite
similar. As the subsequent layers are visualized in separate flows,
it is difficult for users to mentally align them and compare their
similarities. Hence, we introduced a local alignment feature to align
layers with the same type in relatively similar positions. Specifically,
we used the Smith-Waterman algorithm [18]. This algorithm first
determines the substitution matrix and the gap penalty scheme
and, from that, constructs a scoring matrix. Finally, it traces back
this scoring matrix based on the source of each score recursively
to generate the best local alignment. Figure 2(b) shows the aligned
diagram of Figure 2(a). Based on the local alignment, the second
layer (Max Pooling) of the second model is extended, so its subse-
quent layers are aligned with the same subsequence of layers in
the first model.

4.2.3 The Summative Distribution of Layer Types and Hyperparame-
ters. Several summative charts show the distributions of layer types
(② in Figure 1) and hyperparameter values (④ in Figure 1). The
summative chart of layer types renders layer types in six categories:
CNN, RNN, DNN, Activation Function, Loss Function, and Others.
Table 2 shows the variety of layer types that can be recognized by
our system. We also used the same color scheme as the overview
diagram of model structures (③ in Figure 1).

The hyperparameter charts (④ in Figure 1) show the distributions
of different hyperparameter values and layer parameter values.
Our system recognizes and renders 9 hyperparameters, including
learning rate, batch size, epochs, optimizer, momentum, decay rate,
dropout rate, number of hidden layers, and number of hidden layer

Category Recognized Layer Types

CNN Convolution, Deconvolution, Max Pooling,
Average Pooling

RNN LSTM, GRU, BiRNN, RNN, CRF, Attention
DNN Input, Dense, Dropout, Flatten
Other Embedding, Normalization

Activation Function Argmax, ReLU, Sigmoid, Softmax, Linear, tanh
Loss Function Cross Entropy, Reduce Mean, CTC, L2, MSE

Table 2: The neural network layer types that are recognized
and rendered by our current implementation.

units. Unlike the summative chart of layer types, we use bubble
charts to render the distribution of these hyperparameters. The
x-axis represents the value of hyperparameters or parameters. The
y-axis and the radius of each circle indicate how many models have
set this value as a hyperparameter or parameter. The reason why
we used different design elements to visualize the same information
is that in some hyperparameters and parameters, many values will
be concentrated in a small range. For example, many models set the
learning rate to less than 0.01. If we only use the size of the circle
to represent the number of models that use this value, there will be
many overlapping data points. When a user hovers over a circle,
the chart displays the number of models that use this value.

5 USAGE SCENARIO
Suppose Sam is a beginner in deep learning. He wants to imple-
ment a deep learning model for text classification. Without using
ExampleNet, Sam searches with the keyword “text classification” on
GitHub. The GitHub search engine returns 8, 899 related projects.
Sam ranks those projects by their stars. Then he opens the project
that received the most stars and reads its README file to under-
stand basic information about the project.

Sam wants to understand the structure of the neural network
in this project, so he looks for the source code that implements it.
Since he is a beginner in deep learning, he struggles to glean what
he needs from the hundreds of lines of code. Even after attempting
to inspect each line of code, Sam finds it hard to piece together all
the details related to the neural network.

Sam also wants to go over several other projects to identify
which is the most suitable project to follow for his text classification
problem, or at least find out which design choices are common
or atypical. However, he cannot manage to hold all the neural
networks in his memory to mentally compare and contrast them.
He does not even attempt to remember multiple models’ lower-level
details such as the parameter settings of each layer type.

With the help of ExampleNet’s interactive visualizations, Sam
navigates through all the relevant projects in a corpus collected from
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GitHub and establishes a holistic mental model of the design choices
made by other DL programmers. In the Task facet of the faceted
browser (① in Figure 1), Sam quickly finds the text classification task
and selects it. The interface updates to show him the distribution
of different datasets and models used in those text-classification
GitHub projects: specifically, the bars in the light color still show the
number of projects in the original collection, while bars in the dark
color show the conditional distribution—the number of projects after
filtering with Sam’s selections, which he may continue to make
to hone in on the subset of Github projects that will collectively
become his reference point for making his own design decisions.
By looking at the conditional distribution in the facet of model
types (Figure 1 ①), Sam finds that the length of the dark blue bar
for the RNN model is the longest, which means that the majority
of projects implement RNN models for text classification. Thus he
also decides to design an RNN for his task.

Samwants to filter out lower-quality projects. He believes projects’
popularity, in terms of stars and forks, implies their reliability, so
he drags the left border of the brush box in the Project Stars facet
(① in Figure 1) to exclude projects with less than 3, 000 stars. The
histogram bars in other facets are updated accordingly. Now, Sam
finds that the number of models has been reduced to eight. Sam
sets a similar threshold using the Project Forks facet. Finally, Sam
sees in the overview diagram of model structures (③ in Figure 1)
that some projects have too many layers, which are challenging to
train with the limited computational power of his own machine.
He uses the Number of Layers in Projects facet to sets a threshold to
a maximum of 20 layers per project. Seven projects remain.

5.1 Exploring the Design Space of Model
Structures

The layer type histogram (② in Figure 1) shows the distribution
of different layers in the remaining projects. Sam finds that the
majority of projects (four of seven) use LSTM layers. While the
majority of neural networks (four out of seven) use LSTM layers,
only one model uses a GRU layer and two models use BiRNN layers.
Sam realizes that GRU and BiRNN could be alternatives to LSTM
layers. He also notices that all seven projects use Dropout layers,
four use Embedding layers, and one uses Normalization layers.
This is surprising to Sam, since he was not particularly aware and
attentive to Embedding layers before.

Sam is familiar with Normalization and Dropout layers, but he
is not entirely sure how and where to use them. To figure it out,
Sam turns to the overview diagram (③ in Figure 1). He notices that
five of the seven models have a Dropout layer in the middle of the
network, and two place them at the end of the network. He also
notices a pattern of placing a Dropout layer right after an LSTM
layer, and that the Embedding layers are always placed as the first
layer of a neural network.

Sam clicks the alignment view button to re-align the neural net-
work structures in the overview diagram based on layer types.
Figure 3(a) shows the re-aligned neural networks. In this view,
Sam immediately notices the Dense, ReLU, Dense, ReLU, ... pattern.
He also finds that four projects use the alternative GRU/BiRNN,
Dropout, GRU/BiRNN,... pattern. Now Sam is more confident about
the patterns he found earlier. When Sam looks at the end of these

Figure 3: A user aligns models by their layer types and then
compares multiple models.

models, he finds all seven networks use Cross Entropy as their loss
functions, which suggests to Sam that Cross Entropy might be a
proper loss function choice for text classification.

5.2 Exploring the Design Space of
Hyperparameters

In deep learning, hyperparameters are critical to the performance
of the networks. Prior work shows that embeddings, optimizers,
and dropouts have a high impact on model accuracy and training
time [19]. The hyperparameter view allows Sam to explore what
common and uncommon hyperparameters are used by other devel-
opers. In Figure 1 ④, Sam notices five hyperparameters are listed:
learning rate, batch size, epochs, dropout rate, and optimizer. He
did not even know about the decay rate and dropout rate before.
For instance, on the learning rate chart, there are four projects
that choose the learning rate as 0.001 and three projects use 0.0003
(④ in Figure 1). The distribution of various learning rates used by
other programmers augments Sam’s knowledge of an appropriate
learning rate range. Without seeing the distribution of learning
rates, Sam might have picked a learning rate that is too large or too
small, costing him extra tuning iterations to find the optimal value.
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6 DATASET CURATION
To fuel the visualization with real-world model data, we developed
a semi-automated data curation process that extracts model charac-
teristics from GitHub projects. Figure 4 shows the pipeline. In this
work, we focused on models implemented in TensorFlow. To collect
deep learning projects, we searched “deep learning” and “neural
network” on GitHub and downloaded the top-starred projects in
the search result. Then we wrote a script to automatically scan
the source code files in those projects and discarded projects that
do not import python packages from TensorFlow. Given a GitHub
TensorFlow project, we took two major steps to pre-process the
source code and then extract information cues mentioned in the for-
mative study. The extracted information cues were then manually
validated to ensure data consistency and quality.

6.1 Extracting Model Structures via Program
Analysis

We implemented a light-weight program analyzer to identify model
structures from a DL project written in TensorFlow. First, for each
project, the program analyzer scanned the source code and iden-
tified imported TensorFlow APIs. Since many functions in differ-
ent Tensorflow packages have the same name, the package im-
portant information was later used to resolve ambiguous function
calls in the source code. Then, the analyzer conducted a whole-
program call graph analysis to build the call graphs from all source
code in the project. In the whole-program analysis, the analyzer
parsed all source code to abstract syntax trees (ASTs) and tra-
versed the AST of each source code file to build individual call
graphs of that file. Then it connected the individual call graphs to
build a bigger call graph based on function calls between files.
We manually created a mapping from Tensorflow API calls to
neural network layers and layer parameters. Table 2 shows all
layer types that are recognized in this analysis. For example, the
API method tf.nn.conv2d corresponds to the convolution layer,
and tf.keras.losses.CategoricalCrossentropy corresponds
to the cross-entropy loss function. Similarly, we manually created
another mapping for hyperparameters. We defined a list of possi-
ble variable names for each hyperparameter, based on which the
analyzer identified variables that may hold hyperparameter values
via fuzz matching.

Given a call graph, the analyzer filtered out function calls that
were not included in the pre-defined mapping. The remaining func-
tion calls constituted the essence of the model structure. Compared
with manually reading source code and identifying model struc-
tures, this light-weight process significantly reduced the data cura-
tion effort. However, it was not precise enough and thus required
manual validation. We discuss several cases that required attention
from human validators.

First, some projects may use loops to repeatedly add layers to
a neural network. During program analysis, if a TensorFlow API
call appears in a for loop, the analyzer will automatically log a
warning message for manual validation. The human validator then
manually inspects the loop bound to determine how many times a
layer is added to the neural network.

Second, if a TensorFlow API call appeared in an if-else branch,
the program analyzer will also log a warning message. The human

validator then manually assesses the conditional expression and de-
cides whether to add the layer to the model structure. If taking the
if branch and else branch could lead to two different model struc-
tures, the human validator will manually create separate models to
reflect this. For example,

1 if cell_name == 'LSTM':
2 cell = tf.keras.layers.LSTM(units)
3 else:
4 cell = tf.keras.layers.GRU(units)

In this code, the model can have two structures—one with LSTM
units and the other with GRUs. In such a case, the human validator
manually one RNN with LSTMS and the other with GRUs.

Third, the fuzz matching method may fail to recognize some hy-
perparameter values, since GitHub developers may assign obscure
variable names to their hyperparameters. Sometimes, hyperparam-
eters may be set in a configuration file rather than being hardcoded
in the source code. When a hyperparameter is missing in the anal-
ysis result, the human validator must manually go through the
source code files and identify the hyperparameter values.

Finally, we discarded models that have multi-granularity archi-
tectures. For example, in ResNet [8], the residual layer will have
two outputs. The first output is directly linked to the next layer,
and the second output will skip one or more layers. Currently, our
system does not support visualization of such multi-granularity
architectures.

6.2 Identifying DL Tasks and Datasets from
GitHub Projects

In addition to model structures and hyperparameters, we manually
identified the training datasets, tasks, and model names from each
project. We read through the README of each project to identify
dataset names. If the dataset was not mentioned in the README,
we went through the project’s data preprocessing code to identify
the training data. We manually classified identified datasets into six
categories—image, text, video, audio, tabular, and others. Similarly,
we identified the computation tasks such as image classification and
sentiment analysis from the README. Regarding model names,
we first attempted to look for specific names mentioned in the
README, such as VGG and AlexNet. If no specific model names
were found, we manually assigned a general name such as CNN or
LSTM based on the model structures identified in the previous step.

In this work, we downloaded 203 GitHub projects.We ran our
static program analyzer on those 203 projects and found that the
analyzer failed to extract any model structures or hyperparameters
from 86 projects. This is because these 86 projects were outside
the scope of our program analyzer’s capabilities: (a) 82 projects
were not written in TensorFlow and (b) 4 projects used pre-trained
models that our analyzer could not extract relevant data from. Then
we manually went through the README files of the remaining 117
projects. 24 projects were discarded in this step since their README
files did not contain information about their training datasets, tasks,
and model names. Among the remaining 93 projects, 31 (33%) were
eliminated because they included structures outside the scope of
our current visualization algorithms: (a) 7 projects included residual
connections (ResNets), 12 includedmultiple branches (Inception net-
works), 9 included GANs (each contains two networks, a generator,
and a discriminator respectively) and 3 included other unsupported
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Figure 4: The semi-automated data curation pipeline of ExampleNet. Steps in light yellow are automated, while steps in light
green are manual.

models such as HMM. After the analysis and manual validation
steps, we extracted complete model structures, hyperparameters,
and other meta-data for 62 models. These 62 models form the collec-
tion of neural network examples used in the following user study
of ExampleNet. The semi-automated process took roughly 20 man-
hours. The most time-consuming part is to manually go through
GitHub README files to identify DNN related meta-data, which
took about 6 minutes per project.

7 USER STUDY
We conducted a within-subjects study with sixteen participants
to evaluate whether ExampleNet could help them more effectively
develop an awareness of design choices available to them when
designing a deep neural network. Online search, a common prac-
tice in neural network design as indicated by our formative study
(Section 3), is used as the realistic baseline in a control condition.

7.1 Participants
We recruited sixteen master students in Computer Science and
Engineering or Data Science at Harvard University. Participants
received a $25 Amazon gift card as compensation for their time.
Participants had diverse expertise in deep learning. Three of them
had between two and five years of deep learning experience, nine
participants had only one year of experience, and the remaining
four had just one-semester’s experience.

Participants self-reported their familiarity with the two deep
learning domains, CV and NLP, on a 6-point Likert scale. For com-
puter vision, eight participants rated themselves as beginners (0-1
on the Likert scale), seven rated themselves as only somewhat
familiar (2-3 on the Likert scale), and only one participant rated
themselves as familiar (4 point on the Likert scale). For NLP, the
majority of participants (10 out of 16) considered themselves be-
ginners, five rated themselves as somewhat familiar, and one rated
himself as familiar.

7.2 Protocol
We selected two common deep learning tasks from CV and NLP:

• Task 1 (Image Classification): Design a neural network and
find reasonable hyperparameter settings to classify 10K 128×
128 animal images into dog, cat, or others.

• Task 2 (Text Classification): Design a neural network and find
reasonable hyperparameter settings to classify 10K English

conversations into weather, animals, environment protec-
tion, or others.

For each task, participants were asked to answer two questions
related to neural network architecture and hyperparameter design:

• Q1 (Network Structure Design): Draw the neural network and
specify the number of layers and the type of each layer.

• Q2 (Hyperparameter Design): Set the values of four critical
hyperparameters, including learning rate, batch size, epochs,
and optimizer. In addition, provide the name and suitable
value of any other hyperparameters that may help optimize
your model.

Each study took about 70 minutes. Each participant was given
20 minutes to finish each task. In the control condition, participants
were allowed to use any search engines they were comfortable with
to find online resources, e.g., blogs, tutorials, StackOverflow posts,
to answer Q1 and Q2 for the assigned task. In the experiment con-
dition, participants were only allowed to use ExampleNet without
any access to other online resources to answer Q1 and Q2 for the
assigned task. Given that this was a within-subjects study, each
participant experienced one task in one condition and the other task
in the other condition. To mitigate any learning effects, both the
order of the assigned tasks and conditions were counterbalanced
across participants. Before the task with ExampleNet, participants
were asked to first watch an 8-min tutorial video of ExampleNet and
then spend 5 minutes familiarizing themselves with the interface
After each task, the participants were asked to complete a question-
naire to record their reflections on their experience in the assigned
condition. As part of the post-study survey, participants were asked
to answer five NASA Task Load Index questions [7] to rate the
cognitive load of the assigned task. After finishing both tasks, par-
ticipants were asked to fill out another survey to directly compare
the Online Search and ExampleNet conditions. We recorded each
user study session with the permission of participants.

8 USER STUDY RESULTS
8.1 User Performance
Participants using ExampleNet made significantly different design
choices compared with using online search. When using Exam-
pleNet, participants designed deeper neural networks (median of
13 vs. 9.5) with more diverse layer types (median of 7 vs. 5) than
using online search. Though deeper neural networks do not mean
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# of Layers # of Layer Types # of Hyperparameters # of Inspected Examples # of Design Mistakes
Min Median Max Min Median Max Min Median Max Min Median Max Min Median Max

Online Search 4 9.5 21 3 5 7 4 4.5 5 0 2 5 0 1 4
ExampleNet 7 13 30 6 7 9 4 5 10 5 6 12 0 0 1

Table 3: Statistics about number of layers, number of layer types, number of hyperparameters, number of looked examples,
and number of mistakes when using online search and ExampleNet.

The Mistakes Participants Made Participants (Online Search) Participants (ExampleNet)
Missing Activation Function P4, P6, P8, P9, P10, P11, P12, P14 None

Huge Epochs P3, P4, P5, P7, P8, P15 P3, P5
Missing Loss Function P1, P2, P3, P8, P10 None
Missing Dropout Rate P1, P4, P8, P9 None
Missing Dense Layer P13, P14 P3
Huge Learning Rate P3 None

Incorrect Layer Sequencing Order P12 None
Table 4: The mistakes participants made when using online search and ExampleNet.

more superior models, being able to see the distribution of different
neural networks indeed brings programmers more awareness of
various design choices such as different types of layers to leverage
in their own models. For example, 8 out of 16 participants used
Dropout layers in their text classification model when using Exam-
pleNet, while only 3 of 16 participants used it when using online
search. In general, adding Dropout layers can improve generaliza-
tion performance on text classification tasks [25].

The differences are also clear for hyperparameter design: com-
pared with using online search, participants using ExampleNet set
more hyperparameters such as dropout rate, decay rate, and mo-
mentum. Three participants set a decay ratewhen using ExampleNet,
while no participants set one when using online search. By setting
a decay rate, the model will start with a large learning rate and then
let it decay by the proscribed amount over the course of training.
A larger initial learning rate can accelerate training and help the
model escape local minimal. Decaying the learning rate can help
the model converge to a minimum and avoid oscillation [31].

Wemanually analyzed the user study recordings and counted the
number of online examples each participant inspected during the
study. In the online search condition, we defined example inspec-
tion as clicking into a search result. In the ExampleNet condition,
we defined example inspection when they thought out loud about
a model or when they clicked into the GitHub repository page of a
model from ExampleNet. As shown in Table 3, when using online
search, participants only inspected two online examples on the
median. Some of them even designed the neural network based on
their own experience, without looking at a single example. As sev-
eral participants pointed out in the post-study survey, navigating
through online examples and identifying the essence from each
example is time-consuming and cumbersome. By contrast, when
using ExampleNet, participants inspected a median of six GitHub
examples. With the faceted browser in ExampleNet, participants
quickly filtered the large collection of GitHub examples and re-
trieved the ones that were most relevant to their task and dataset.
The overview diagram provided them a bird’s-eye view, enabling

them to simultaneously compare and contrast multiple model struc-
tures. However, with online search, participants had to click into
each search result, identified the model in it, and went back and
forth to compare them. This was time-consuming and cumbersome.
P14 explained this contrast between using ExampleNet and online
search in the following way, “[ExampleNet] provides you several
reasonable filtering conditions and clear comparisons of structures of
different well-known models. ... [When searching online,] I was easily
overwhelmed when facing a massive amount of information from the
internet. And I didn’t know which one to start from.”

Table 3 quantifies the model design differences in terms of the
number of layers, the types of layers used in a model, the number
of hyperparameters, the number of inspected examples, and the
number of design mistakes.

We manually assessed the models designed by each participant.
Table 4 shows the distribution of different kinds of design mistakes
made by participants. The most common mistake is “Missing Acti-
vation Function” (8/16). If the model does not contain an activation
function, it will be a linear model. The complexity of the linear
model is limited, the robustness is reduced, and the ability to learn
the complex functional mapping from the data is weaker. Some de-
sign mistakes may lead to more severe consequences. For example,
missing loss functions and incorrect layer sequencing order will
cause runtime errors. As another example, missing the dense layer
will cause the model to be unable to convert the dimensions of the
output from the convolution and pooling layers into the output
space corresponding to the classification task. Therefore, the model
cannot calculate the loss and thus cannot perform backpropagation
to update the weight of each parameter in the model.

We found that ExampleNet has a statistically significant impact
on assisting participants to reduce mistakes (Table 4) in neural
network design and hyperparameter design. On average, each par-
ticipant made a median of 0.19 mistakes in both tasks. In contrast,
when using online search, they made an average of 2.06 mistakes
in each task. The mean difference of mistakes (1.88) is statistically
significant (paired t-test: 𝑡 = 4.5281, 𝑑 𝑓 = 30, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.00001).
The comparison between online search and ExampleNet indicates
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Figure 5: (a) when using ExampleNet, participants felt more
confident in the networks they designed, (b) participants
thought that ExampleNet is more helpful than online search
when they searched and designed neural networks.

that providing more examples and giving the holistic view of these
examples could significantly decrease the rate of mistakes when
designing deep learning models and choosing hyperparameters.

8.2 Impact of User Expertise
While not found to be statistically significant, there is little discern-
able difference between the ExampleNet’s impact on the mistake
rate of participants claiming no familiarity (1 on a 6-point Likert
scale) with an assigned task (CV or NLP) and the mistake rate of
participants claiming at least some familiarity (2 or higher on a
6-point Likert scale). Both the task-unfamiliar participants using
ExampleNet and the task-at-least-somewhat-familiar participants
made at most one mistake (min: 0, median: 0, max: 1) compared to
task-unfamiliar participants using online search (min: 1, median:
1.5, max: 4) and task-at-least-somewhat-familiar participants (min:
0, median: 1, max: 3).

8.3 User Confidence and Cognitive Load
In the post-study survey, participants reported having more confi-
dence in their neural networks when using ExampleNet. Figure 5
shows the distribution of their confidence ratings on a 7-point Likert
scale. The median confidence when using ExampleNet is 1.5 points
higher than when using online search. In addition, all sixteen par-
ticipants found ExampleNet more helpful than online search. These
results imply that rendering the commonalities and variations of a
large collection of examples is more useful than overwhelming. P1
said “when I construct the model through online resources, I usually

Figure 6: Participants felt less mental demand, hurry, and
frustration when using ExampleNet to complete two tasks.
They also believed themselves have a better performance
when using ExampleNet.

only select the first model that makes sense as my starting point. Ex-
ampleNet lists a comparison between models, so I am more confident
in the model that I selected.” P4 said, “it [ExampleNet] helps me find
the most useful information quickly and I could compare it to different
models. I can clearly see the network designs and parameter settings.”
With the help of a faceted browser, participants could easily filter
the corpus of deep learning projects based on their own tasks or
datasets. P10 said “many times I don’t know if the information I got
from online search is accurate or not, or if they are tailored to my
project. ExampleNet aggregates well-developed model architectures
into one place. This greatly helped me make well-informed decisions
when choosing model architectures.”

As shown in Figure 6, participants felt more mental demand,
hurry, and frustration when using online search than using Exam-
pleNet. This is mainly because ExampleNet directly shows a holistic
summary of related models, so participants no longer need to read
hundreds of lines of codes and tutorials. P3 mentioned, “ExampleNet
gives a comprehensive summary of every aspect in networks, such as
hyperparameter values and depth of networks. Most online articles
do not talk about the hyperparameter value choices in the model, but
just the model introduction, which made me confused.”

8.4 Qualitative Feedback
Most participants (13/16) rated the overview diagram of model
structures as the most useful feature in ExampleNet. They believed
that this overview diagram provides a clear and comparable way
for users to discover commonalities and variations through a large
collection of network structures. P7 said “the visualization of model
architectures is quite informative in showing what are some common
architectures shared across different projects, while also showing how
each network differs from one another.” 11 out of 16 participants
liked the histogram that shows the distribution of the number of
models for each layer used (6 or 7 on a 7-point scale). The function
of aligning different model structures received a mixed feeling from
our participants—half of the participants (8/16) found it useful while
the other half stayed neutral about it. Other features, such as bubble
charts showing the distribution of different hyperparameters (7/16),
providing the link to each GitHub repository (3/16), clear and easy-
to-use interface (7/16), and the ability to sort examples by stars and
forks (P7), also received a lot of positive reviews. Regarding the
feature that shows the distribution of different hyperparameters,
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P3 mentioned “it gives the recommendations of hyperparameter val-
ues which helped me a lot since I didn’t have experience in tuning
parameters of NLP.” P7 believed that allowing users to sort models
by stars and forks is an advantage of ExampleNet: “the ability to sort
projects by stars and then highlight the relevant network is also quite
helpful and can get beginners up to speed in a short amount of time.”

Regarding online search, four participants pointed out that search-
ing based on keywords only could not accurately find the desired
results. P1 said, “sometimes I don’t get what I want straightforwardly,
like when I want to find a good initial value for the learning rate, the
website talks about the advantages and disadvantages of having it
too large or too small. I also don’t know what keywords I should put
in this part.” P2 also complained, “when I searched for ’optimizer’, it
[GitHub Search] gave me many results about ’optimization’, which is
completely different.” P7 said, “the problem is, it is hard to tell which
website gives the answer I am looking for and the quality of each
website is not guaranteed.” Most participants (10/16) complained
that the large amount of information provided by online search is
time-consuming and also overwhelming. P6 said, “there is too much
information when I used online search, kind of hard to locate exactly
what I want. Also, too much information could be distracting and
very time-consuming.”

They also made some suggestions to improve ExampleNet. Four
participants wanted ExampleNet to add more details about the
dataset size and the input and output types of a model. Two partici-
pants suggested to improve the color scheme in ExampleNet. One
participant suggested to add the last update time of each GitHub
project, since he trusted actively maintained projects more. Two
participants wished ExampleNet could automatically generate a
model based on their high-level design choices.

In the last part of the post-survey, we asked how ExampleNet
may fit into their programming workflow. Four out of sixteen par-
ticipants wrote that they wanted to use ExampleNet when facing
unfamiliar tasks, data sets, and models. P1 said, “I will use Exam-
pleNet when I am unfamiliar with the model I am gonna use. ... I am
very unfamiliar with NLP and hyper-parameter selection for models,
[so] I would come to ExampleNet for this part. It’s a better place to
start, especially when I am not familiar with some layers that I might
use, it’s good to see their positions in the model first and get a rough
idea what I can expect to see in my final model.” Five participants
wished to use ExampleNetwhen they needed to quickly find suitable
and popular models.

9 DISCUSSION
The user study results suggest that ExampleNet helps deep learn-
ing programmers browse more examples, make more data-driven
design decisions, and make fewer mistakes. We believe these differ-
ences are, in part, a result of ExampleNet’s support on task-centered
compare and contrast cognition, as well as norm-setting through
showing the distribution of common and uncommon choices made
by other programmers, from model structures to layer parameter
values. We also believe ExampleNet answers many of the concrete
questions and information needs identified in the formative study.

Specifically, the multifaceted browser provides a convenient way
to filter GitHub projects based on the processed datasets, tasks,

and model names. As informed by the formative study, program-
mers only care about those models that process similar datasets
and tasks as their own (Section 3.3.2). Without the faceted browser,
programmers need to dig into each project and figure out whether
the project is relevant or not. The Sankey diagram and the hy-
perparameter charts give an overview of different layer types and
hyperparameters in relevant DL models after filtering. Many user
study participants started with very vague ideas such as “I want
to use a CNN” and “a CNN should have a convolution layer.” Yet
they did not know exactly what other layers they should consider
including, possible orders of layers, what optimizers to consider, etc.
By looking at the Sankey diagram and the hyperparameter charts,
they could quickly answer those questions. As shown in Table 4,
when only looking at online tutorials without such an overview in
ExampleNet, participants made more design mistakes.

ExampleNet does not remove the need for tuning model struc-
tures and hyperparameters in the training phase. Based on the
training result, programmers still need to adjust some hyperparam-
eter values and experiment with alternative hyperparameters to
arrive at an optimal model. The lab study suggests that ExampleNet
may give users a better starting point for their own iterative neural
network design process and hyperparameter tuning, which may be
critical to quickly getting reasonable results from a newly-designed
neural network.

Since designing and tuning deep learning models requires much
human expertise, the Machine Learning community has proposed a
series of automated machine learning (AutoML) techniques that au-
tomatically build DL models without human assistance [9]. Though
AutoML is a promising solution for reducing the manual effort and
adoption barrier of deep learning, many programmers may still
want to learn how to design neural network models themselves, or
at least be aware of possible design choices so that they can better
assess models synthesized on their behalf by tools like AutoML.
Exploratory tools like ExampleNet will still be useful in such cases.
In addition, the designers of AutoML techniques can also use tools
like ExampleNet to discover what kinds of models, hyperparame-
ters, and other ML tricks have been developed and used in the wild
and further incorporate this variety of design options into their
AutoML algorithms.

10 LIMITATIONS AND FUTUREWORK
Our current system design and implementation has several limita-
tions, which remain to be addressed in future work. As described
in Section 4, each flow in the modified Sankey diagram can only
represent layers in a model sequentially, so ExampleNet is unable
to support visualizing networks with branch-like structures. Two
major extensions are needed to support networks with more com-
plex structures. First, the static analyzer needs to be extended to
recognize related APIs such as “tf.concat” in program analysis to
handle residual connections and multiple branches. The Sankey
diagram needs to be replaced with other types of visualizations
such as Union Graphs [2] to aggregate models with non-sequential
network structures.

Currently, our static program analyzer only extracts model struc-
tures and hyperparameters from models built by TensorFlow. It can
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be extended to other DL frameworks such as PyTorch by supple-
menting two pre-defined mappings in JSON—one mapping between
library API methods and layer types and another mapping between
API method parameters and hyperparameters. Apart from the lim-
itations on the API, supporting models written in programming
languages other than Python would require swapping in a different
language parser and updating the downstream AST-traversing code.
Supporting additional deep learning frameworks such as PyTorch,
additional layer types, and hyperparameters, will likely be a matter
of engineering rather than additional novel system design.

As described in Section 6, the data curation process is only semi-
automated. The major limitation is that we have to manually skim
through the README file of a GitHub repository to identify DNN
related meta-data, including dataset types, tasks, and model names.
It took us about 6 minutes per project. The manual effort will in-
crease linearly as the number of projects increases. This can be
mitigated in two ways. First, future Github users could be encour-
aged to explicitly encode those DNN related meta-data in their
README files, much like some medical publication sites invite
authors to submit their papers with explicitly described PICO ele-
ments [21]. This can make those meta-data more readily available
for search and analysis. Second, using keyword matching or some
NLP methods can to some extent reduce the manual effort; manual
validation is still necessary as automated methods may not always
be accurate.

In our user study, though our participants are new to deep learn-
ing, they are not new to programming. All 16 participants are
graduate students; 13 of them have over one year of working ex-
perience as data scientists or software engineers. 14 of them have
2 to 5 years of programming experience. Therefore, they do not
represent those deep learning learners who are new to both deep
learning and programming.

11 CONCLUSION
This paper presents a novel interactive visualization interface that
allows users to (1) simultaneously explore design choices in a large
number of deep learning projects, and (2) compare and contrast the
common and uncommon design choices. We conducted a within-
subjects study with sixteen deep learning programmers to evaluate
ExampleNet. The study results show that when using ExampleNet,
participants inspected more neural network examples than online
search. After inspecting the network design and hyperparameters
setting in these examples, participants using ExampleNetmademore
data-driven design decisions, such as picking a more reasonable
learning rate as a starting point, using dropout and normalization
to build more robust models. In addition, using ExampleNet, par-
ticipants made significantly fewer design mistakes, e.g. missing
activation functions, missing loss functions, incorrect layer orders,
etc. In the end, we discussed the possibility of fully automating the
data curation pipeline, supporting more complex model architec-
tures, and surfacing more information cues such as dataset size,
model accuracy, and training time.
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A INTERVIEW QUESTIONS IN THE
FORMATIVE STUDY

We used the following nine questions to guide the semi-structured
interview in the formative study.
Section 1. Learning Neural Networks

1. What kinds of machine learning projects have you worked
on?

2. What kinds of challenges do you face when learning to build
neural networks?

3. What kinds of online resources do you find very useful?
Section 2. Searching Example Neural Networks

1. Do you search for examples when you learn and build neural
networks? How often?

2. How do you search for such examples? Do you search on
Google, Stack Overflow, GitHub? What kinds of keywords do you
often use?

3. What kinds of difficulties do you have when searching for
those examples?
Section 3. Visualizing Example Neural Networks

1. Suppose we have built a magic search engine that can identify
many relevant deep learning projects. What kinds of information
do you want to discover from this pile of projects? Or what kinds
of questions do you want to answer using this data?

2. Have you used TensorBoard before? How do you like or dislike
the visualization tool in TensorBoard?

3. We sketched several alternative designs for visualizing neural
networks. How do you like or dislike each visualization design?
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