
Visualizing API Usage Examples at Scale

Elena L. Glassman‡∗, Tianyi Zhang‖∗, Björn Hartmann‡, Miryung Kim‖
‡∗UC Berkeley, Berkeley, CA, USA

‖∗UC Los Angeles, Los Angeles, CA, USA
{eglassman, bjoern}@berkeley.edu, {tianyi.zhang, miryung}@cs.ucla.edu

Figure 1. EXAMPLORE takes a focal API call that a programmer is interested in, locates uses of that API call in a large corpus of mined code examples,
and then produces an interactive visualization that lets programmers explore common usage patterns of that API across the corpus.

ABSTRACT
Using existing APIs properly is a key challenge in program-
ming, given that libraries and APIs are increasing in number
and complexity. Programmers often search for online code
examples in Q&A forums and read tutorials and blog posts
to learn how to use a given API. However, there are often a
massive number of related code examples and it is difficult for
a user to understand the commonalities and variances among
them, while being able to drill down to concrete details. We
introduce an interactive visualization for exploring a large
collection of code examples mined from open-source reposito-
ries at scale. This visualization summarizes hundreds of code
examples in one synthetic code skeleton with statistical distri-
butions for canonicalized statements and structures enclosing
an API call. We implemented this interactive visualization for
a set of Java APIs and found that, in a lab study, it helped users
(1) answer significantly more API usage questions correctly
and comprehensively and (2) explore how other programmers
have used an unfamiliar API.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g., HCI):
Miscellaneous

Author Keywords
API, code examples, programming support, interactive
visualization
*The two lead authors contributed equally to the work as part of an
equal collaboration between both institutions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 2018 April 21–26, 2018, Montreal, QC, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5620-6/18/04.

DOI: https://doi.org/10.1145/3173574.3174154

INTRODUCTION
Learning how to correctly and effectively use existing APIs is
a common task — and a core challenge — in software develop-
ment. It spans all expertise levels from novices to professional
software engineers, and all project types from prototypes to
production code. The landscape of publicly available APIs is
massive and constantly changing, as new APIs are created in
response to shifting programmer needs. Within companies,
the same is true, perhaps even more so: joining a company can
require learning a whole new set of proprietary APIs before
a developer becomes an effective contributor to the company
codebase. Developers often are stymied by various learning
barriers, including overly specific or overly general explana-
tions of API usage, lack of understanding about the interaction
between multiple APIs, lack of alternative uses, and difficulty
identifying program statements and structures related to an
API [11, 19, 5].

One study found that the greatest obstacle to learning an API is
“insufficient or inadequate examples.” [19] Official documenta-
tion is typically dominated by textual descriptions and expla-
nations, often lacking concrete code examples that illustrate
API usage. Tutorials and blog posts walk developers through
simplified code examples but often without demonstrating al-
ternative uses of an API, which programmers frequently desire
when learning unfamiliar APIs [5, 19, 4].

Code-sharing sites like GitHub hold the promise of document-
ing all the common and uncommon ways of using an API
in practice, including many alternative usage scenarios that
are not typically shown in curated examples. However, given
the large amount of code available online, it is challenging
for developers to efficiently browse the enormous volume of
search results. It is certainly infeasible for developers to ex-
amine more than a few code examples simultaneously. In
practice, programmers often investigate a handful of search
results and return to their own code due to limited time and

https://doi.org/10.1145/3173574.3174154


attention [3, 23, 5]. Prior work has shown that individual
code examples may suffer from API usage violations [29],
insecure coding practices [7], unchecked obsolete usage [31],
and comprehension difficulties [25]. Therefore, inspecting a
few examples may leave out critical safety checks or desirable
usage scenarios.

In the software engineering community, there is a growing
interest in leveraging a large collection of open source reposi-
tories—so called Big Code—to automatically infer API usage
patterns from massive corpora [4, 16, 26, 30]. However, these
API usage mining techniques provide limited support to help
programmers explore concrete code examples from which API
usage patterns are inferred, and understand the commonalities
and variances across different uses. To bridge the gap, we
aim to visualize hundreds of concrete code examples mined
from massive code corpora in a way that reveals their com-
monalities and variances, and design a navigation model to
guide the exploration of these examples. We draw motivation
from prior work on visualizing large corpora of related doc-
uments, e.g., student coding assignments [8], text [27, 21],
and image manipulation tutorials [17], to pose the following
research question: How might we extract, align, canonicalize,
and display large numbers of usage examples for a given API?

In this paper, we introduce a novel interactive visualization
and navigation technique called EXAMPLORE that (1) gives a
bird’s-eye view of common and uncommon ways in which a
community of developers uses an API and (2) allows develop-
ers to quickly filter a corpus for concrete code examples that
exhibit these various uses. It operates on hundreds of code
examples of a given API method, which can be automatically
mined from open-source projects or proprietary codebases. It
is designed to supplement existing resources: for example,
while Stack Overflow can provide explanations and discus-
sions, EXAMPLORE provides quantitative information about how
an API call is used in the wild.

EXAMPLORE instantiates a synthetic code skeleton that captures
a variety of API usage features, including initializations, en-
closing control structures, guard conditions, and other method
calls before and after invoking the given API method, etc. This
skeleton is designed to be general: it is grounded in how API
design is taught in software engineering curricula and how API
mining researchers conceptualize their tasks [11, 19, 5]. EXAM-
PLORE visualizes the statistical distribution of each API usage
feature in the skeleton to provide quantitative evidence of each
feature in the corpus. The user can select one or more features
in the skeleton and, by dynamically filtering mined code exam-
ples from the corpus, drill down to concrete, supporting code
examples. Color-coordinated highlighting makes it easier for
users to recognize the correspondence between features in the
skeleton and code segments within each example.

We conducted a within-subjects lab study where we asked six-
teen Java programmers of various levels of expertise to answer
questions about the usage of particular Java APIs based on
either (1) searching online for relevant code examples, blogs,
and forum posts or (2) using EXAMPLORE to explore one hun-
dred API usage examples mined from GitHub. On average,
participants answered significantly more API usage questions

correctly, with more concrete details, using EXAMPLORE. This
suggests that EXAMPLORE helps users grasp a more comprehen-
sive view of API usage than online search. In a post survey, the
majority of participants (13/16) found EXAMPLORE to be more
helpful for answering API usage questions than online search,
and when using EXAMPLORE, their median level of confidence
in their answers was higher.

Our contributions are:

• a method for generating an interactive visualization of a
distribution of code examples for a given API call
• an implementation of this interactive visualization for a set

of Java and Android API calls
• a within-subjects lab study that shows how this interactive

visualization may fill an important role in developers’ pro-
gramming workflows as they use unfamiliar APIs.

RELATED WORK

Interfaces for Exploring Collections of Complex Objects
Prior work on visualizing large collections of related docu-
ments spans a variety of complex data types, from Photoshop
image manipulation tutorials [17] to Antebellum slave narra-
tives [21]. Each interface designs around the constraints—and
leverages the opportunities—afforded by the data source.

Sifter [17] and Delta [12] operate on sequences of image
manipulation operations. Pavel et al. create an interface for
browsing the variation and consistency across large collections
of Photoshop tutorials, focusing in particular on sequences
of invoked Photoshop commands [17]. Kong et al. address a
similar problem by presenting different linked views, includ-
ing lists, side-by-side comparisons between a few sequences,
and clusters [12] . Unlike code or text, images can be easily
consumed at a glance, so these systems use thumbnails to
make a long reading comparison task easy.

Both WordTree [27] and WordSeer [21] operate on text,
while EXAMPLORE attempts to translate similar insights to code.
WordTree uses alignment, counts, deduplication, and depen-
dence to visualize the N+1-word sequences containing the
N-word long sequences simultaneously for a user-chosen root
word. Similar to WordTree, EXAMPLORE captures dependencies
across the multi-dimensional space of code examples. For
example, when a user selects a particular feature option in
the code skeleton, EXAMPLORE dynamically updates the counts
of remaining feature options so that they are conditioned on
the selected option, revealing the statistical distribution of co-
occurring feature options. WordSeer infers the grammatical
structure of natural language documents in a given corpus. It
leverages the inferred grammatical structure to power gram-
matical search, where users can query for, e.g., who (or what)
is described as “cruel” in North American Antebellum slave
narratives? The result is a ranked list, with counts, of the
different extracted entities described in one or more narratives
as “cruel”; we adapt this display in EXAMPLORE to show the
distribution of options for an API usage feature such as the
guard condition of an API call.

OverCode [8] helps users explore collections of code. Over-
Code represents how hundreds or thousands of students inde-



pendently implement the same function in massive program-
ming classes. OverCode uses its own form of human-readable
variable name canonicalization, deduplication, and formatting
so that the student programming solutions are rendered as
readable and executable function definitions with counts rep-
resenting the number of corresponding raw functions in the
corpus. OverCode does not directly carry over to functions col-
lected outside a massive classroom, where developers are not
all implementing the exact same function, where developers
are using statically typed languages like Java, and where de-
velopers must understand a variety of API usage features such
as data dependences, guard conditions, and control structures.

Learning APIs with Code Examples
Programmers often search for code examples to complete pro-
gramming tasks and learn new APIs [20, 10, 22, 15]. A recent
study at Google shows that developers search code frequently,
issuing an average of 12 code search queries per weekday [20].
Montandon et al. instrumented the Android API documenta-
tion platform and found that programmers often searched for
concrete code examples within the documentations [15].

Individual code examples may suffer from insecure or unreli-
able code, unchecked obsolete or outdated usage, and compre-
hension difficulty. Fischer et al. investigated security-related
code on Stack Overflow and found that 29% is insecure [7].
Another study on Stack Overflow found that 76% of detected
API misuse in Stack Overflow could lead to program crashes
due to omitted safety checks and unhandled runtime excep-
tions when reused verbatim to a client program [29]. Zhou et
al. observed that 86 of 200 accepted posts on Stack Overflow
used deprecated APIs but only 3 of them were reported by
other programmers [31]. Treude and Robillard conducted a
survey to investigate comprehension difficulty of Stack Over-
flow code examples and found that over half of code examples
were considered hard to understand [25]. These studies mo-
tivate our goal of exploring and visualizing a large number
of code examples simultaneously to help developers better
understand common API usage. The desire for visualizing
multiple code examples for API learning has been confirmed
by previous studies. Buse and Weimer conducted a survey
with 150 programmers and found that “the best documentation
must show all different ways to use something, so it’s helpful
in all cases” [28]. The respondents in another survey also
expressed a desire to examine multiple examples to investigate
alternative uses [19].

In practice, however, developers often examine only a few
search results due to limited time and attention. Brandt et
al. observed that programmers typically clicked several search
results and then judged their quality by rapidly skimming [3].
Duala-Ekoko and Robillard observed that participants often
backtracked when browsing search results, due to irrelevant or
uninteresting information in search results [5]. More specif-
ically, Starke et al. showed that programmers rarely looked
beyond five examples when searching for code examples to
complete a programming task [23]. These results indicate
that the code exploration process is often limited to a few
search results, leaving a large portion of foraged informa-
tion unexplored. To guide users to explore a large number of

code examples simultaneously, EXAMPLORE constructs a code
skeleton with statistical distributions of individual API usage
features as a navigation model.

Mining and Visualization of API Usage
In the software engineering community, there is an increas-
ing interest in mining Big Code, a massive collection of open
source repositories to detect potential bugs or to help pro-
grammers understand implicit programming rules. Several
techniques infer API usage patterns in terms of pairwise pro-
gramming rules [13, 14, 24, 15], method call sequences [30,
26], and graph-based models [16, 4]. For example, PR-Miner
models programs as sets of method calls and uses frequent
itemset mining to infer pairwise programming rules such as
{file.lock()}⇒{file.lock(),file.unlock()} [13], indicating
that file.unlock() must be called after file.lock(). These
techniques are often used to detect potential bugs caused by
API usage violations [2, 13, 18, 14, 9, 24].

Some techniques provide support for visualizing the re-
sults of mined API usage patterns but they do not focus
on how to effectively visualize concrete supporting exam-
ples together. For example, Buse et al. synthesize human-
readable API usage code based on the mined graph patterns [4].
GrouMiner applies a similar graph-based mining algorithm
and un-parses mined graph patterns to generate correspond-
ing source code [16]. Wang et al. mine frequent method call
sequences and visualize the mined call sequences in a prob-
ability graph [26]. While all these techniques visualize the
mined patterns directly with respect to underlying API usage
patterns, they do not provide traceability to concrete examples
that illustrates these patterns. Instead, EXAMPLORE instantiates a
general code skeleton that demonstrates a variety of API usage
features, visualizes the statistical distribution of each feature in
a large collection of open-source projects, and provides a navi-
gation model to allow users to understand the correspondence
between abstract API usage features and concrete examples.

In our ICSE 2018 paper [29], we develop an API usage min-
ing framework that extracts API usage patterns automatically
from 380K GitHub repositories and subsequently report po-
tential API usage violations in 217,818 Stack Overflow posts
to demonstrate the prevalence and severity of API misuse on
Stack Overflow. In this CHI paper, we leverage the resulting
data set and design new interactive visualization support for
exploring and comprehending massive code examples at scale.
Therefore, we are not arguing for the novelty and contribution
of the API usage mining technique. Instead, the main contri-
bution of EXAMPLORE is a novel UI prototype that summarizes
hundreds of code examples in one synthetic code skeleton with
statistical distributions for important pieces that a developer
must understand to figure out how to use a given API correctly.

SYNTHETIC CODE SKELETON
To visualize and navigate a collection of code examples in the
order of hundreds or thousands, we introduce the concept of a
synthetic code skeleton, which summarizes a variety of API
usage features in one view for ease of exploration. Its design
is inspired by previous studies on the challenges and obsta-
cles of learning unfamiliar APIs. Duala-Ekoko and Robillard



Figure 2. (a) The layout of our general code skeleton to demonstrate different aspects of API usage. The skeleton structure corresponds to API design
practice. (b) A screen snapshot of EXAMPLORE and its features, derived from 100 mined code examples for FileInputStream. The first six of those 100
code examples are visible on the right.

argue that a user must understand dependent code segments—
object construction, error handling, and interaction with other
API methods—related to an API method of interest [5]. Ko
et al. found that programmers must be aware of how to use
several low-level APIs together (i.e., a coordination barrier);
how to invoke a specific API method with valid arguments;
and how to handle the effects of the method (i.e., a use bar-
rier) [11]. Figure 2(a) shows the layout of the code skeleton
in the EXAMPLORE interface.

The skeleton is composed of the following seven API usage
features that can co-occur with a common focal API method
call that is of interest to the user:

1. Declarations Prior to calling the focal API method, pro-
grammers may construct a receiver object and initialize
method arguments.

2. Pre-focal method calls Developers may need to configure
the program state of the receiver object or arguments by
calling other methods before the focal API method call.
For example, before calling Cipher.doFinal to encrypt or
decrypt a message, programmers must call Cipher.init to
set the operation mode and key. Otherwise, doFinal will
throw IllegalStateException, indicating that the cipher has
not been configured.

3. Guard Developers often need to check an appropriate
guard condition before the focal API call. For example,

before calling Iterator.next, programmers can check that
Iterator.hasNext returns true to make sure another element
exists, before calling Iterator.next to retrieve it.

4. Return value check Developers often need to read the
return value of the focal API method call. For example,
Activity.findViewById(id) returns null if the id argument is
not valid. For API methods that may return invalid objects
or error codes, programmers must check the return value
before using it to avoid exceptions.

5. Post-focal method calls Developers may make follow-up
method calls on the receiver object or the return value
after calling the focal API method. For example, after
calling Activity.findViewById to retrieve a view from an
Android application, programmers may commonly call
additional methods on the returned view, like setVisibility
or setBackground, to update its rendering.

6. Exception handling For API methods that may throw
exceptions, programmers may consider which exception
types to handle and how these exceptions are handled in a
try-catch block.

7. Resource management Many Java API methods manipu-
late different types of resources, e.g., files, streams, sockets,
and database connections. Such resources must be freed
to avoid resource leaks. A common practice in Java is to
clean up these resources in a finally block to ensure these
resources are freed, even in case of errors.



Figure 3. As revealed by EXAMPLORE, programmers most often guard
this API call by checking first if the argument exists.

This skeleton design targets API usage in Java. All the compo-
nents of the skeleton are standard aspects of Java API design
and usage known to the software engineering community [11,
19, 5]. In other words, the skeleton is the reification of do-
main knowledge among those who design, teach about, and
do research on Java APIs.

This skeleton can be generalized to similar languages like
C++ and C. Some components captured by the skeleton, e.g.,
conditional predicates guarding the execution of an API call,
are expected to generalize to many other languages. Additional
components may be necessary to capture API usage features in
other programming paradigms, e.g., functional programming.

SCENARIO: INTERACTING WITH CODE DISTRIBUTIONS
EXAMPLORE is designed to help programmers understand the
common and uncommon usage patterns of a given API call.
Let’s consider Victor, a developer who wants to learn how
to use FileInputStream objects in Java. EXAMPLORE shows one
hundred code examples mined from GitHub that include at
least one call to construct a FileInputStream object.

The right half of the screen shows all mined examples, sorted
from shortest to longest. Victor can quickly pick out the
FileInputStream constructor in each example because they are
each highlighted with the same blue color as the header of the
focal API section of the code skeleton (± in Figure 2). Each
section of the skeleton has a distinct heading color, which is
used to highlight the corresponding concrete code segments in
each code example, e.g., initializing declarations in red, guards
in light orange. This is designed to reduce the cognitive load of
parsing lots of code, and allows Victor to more easily identify
the purpose of different portions of code within each example.

EXAMPLORE reveals, by default, the top three most common
options for each section of the skeleton (Æ in Figure 2). Victor
notices that, based on the relative lengths of the blue bars
aligned with each option for calling FileInputStream, passing
a File object as the argument is twice as likely as passing
fileName, a String. By looking at the guard condition options
within the if section in Figure 3, Victor can see how other
programmers typically protect FileInputStream from receiving
an invalid argument. He can also tell, by the small size of
the blue bars aligned with these expressions, that these most
popular guards are still not used frequently, overall. If he wants
to see more or fewer options per skeleton section, he can click
the “Show More” or “Show Less” buttons, or explore the long
tail of the corpus by clicking “Show All” (¯ in Figure 2).

Victor is interested in exploring and better understanding
the less common FileInputStream constructor, which takes a

Figure 4. The bars now show total counts (pastel) and counts con-
ditioned on filtering for the selected option (darker), stream = new
FileInputStream(fileName). Options that do not co-occur with the
selected option are hidden.

String argument representing a file name. Victor clicks on the
radio button next to stream = new FileInputStream(fileName).
The active filters (° in Figure 2) are updated and the right-
hand side of the screen now only lists code examples that
construct a FileInputStream with a String.

Feature options in the skeleton view are pruned and updated
based on Victor’s selection (Figure 4). Since the selected
FileInputStream constructor takes a String argument instead
of a File object, the options that declare and initialize the File
object disappear. The counts of the remaining co-occurring
options are affected: the total, unfiltered counts shown in
pastel bars are unchanged, but darker bars are super-imposed,
showing the new counts for the subset of examples in the
corpus that construct FileInputStream with a String.

Victor realizes that there is one place in his project where it
will be a hassle to get a file name. He will need to use the other
version of FileInputStream constructor that takes a File object
instead. He wonders what guards other programmers use
to prevent problems when constructing a FileInputStream this
way. As shown in Figure 5, by clicking on the radio button next
to stream = new FileInputStream(file) and the check box for
the enclosing if block, he filters the skeleton options and con-
crete code examples down to just those with the guards he is in-
terested in. He clicks “Show All” to see all the guard options in
the corpus, from the most common guards like file.exists()
to more unusual guards like file.isFile(). He was not aware
that the File object has an isFile()method. He scrolls through
a few of the concrete code examples on the right-hand side
of the screen to confirm that he understands how these guard
conditions are expressed in other programmers’ code, and then
continues his task of creating well-guarded FileInputStream
objects in his own code.

SYSTEM ARCHITECTURE AND IMPLEMENTATION
EXAMPLORE retrieves and visualizes hundreds of usage exam-
ples for a given API call of interest in three phases, shown in
Figure 6. In the Data Collection phase, EXAMPLORE leverages
an existing API usage mining framework [29] to crawl 380K
GitHub repositories and retrieve a large number of code ex-
amples that include at least one call to the API method call of
interest. In the Post-processing phase, EXAMPLORE analyzes the
code examples, labels the segments of code that correspond to
each API usage feature in the skeleton, and then extracts and
canonicalizes those segments of code to populate the options



Figure 5. A screen snapshot taken while answering the question “What guards do programmers in this dataset use to protect stream = new
FileInputStream(file)?” The red arrows point to the user’s selections and corresponding filtered code elements that answer this question.

Figure 6. EXAMPLORE system architecture.

for each feature in a MongoDB database. In the Visualization
phase, EXAMPLORE renders the code skeleton, including the
canonicalized options for each feature and their distribution
in the corpus, and highlights the code segments within each
mined code example from which the canonicalized options
were extracted. The user interacts with the visualization by
selecting features and specific options to filter by.

Data Collection
Here, we briefly summarize the mining process in [29] to
describe the format of resulting code example data used in EX-
AMPLORE. Given an API method of interest, the mining process
first traverses the abstract syntax trees of Java files and locates
all methods invoking the given API method by leveraging ultra-
large-scale software repository analysis infrastructure [6]. For
each scanned method, the mining technique uses program slic-
ing to remove code statements irrelevant to the API method
of interest. For example, when the API method of interest is
the constructor of FileInputStream on line 12 in Figure 7, only
underlined statements and expressions in lines 10, 16, and 24
are retained, as these have direct data dependences on the focal
API call at line 12. In addition to filtering relevant statements
based on direct data dependences, EXAMPLORE also identifies
enclosing control structures such as try-catch blocks and if
statements relevant to the focal API call. A control structure
is related to a given API call if there exists a path between
the two and the API call is not post-dominated by the control
structure [1]. In Figure 7, the API call to new FileInputStream
(line 12) is related to the enclosing try-catch-finally block
at lines 11 and 19-27 and the preceding if statement at line
3. Such control structure information is used to extract API
usage features about guard conditions, return value checks,
and exception handling. In each scanned code example, each

1 @RequestMapping(method = RequestMethod.POST)
2 public void download(String fName, HttpServletResponse

response, HttpSession session) {
3 if (fName == null) {
4 log.error("Invalid File Name");
5 return;
6 }
7 String path = session.getServletContext().getRealPath("/")+

fName;
8 response.setContentType("application/stream");
9 response.setHeader("Content-Disposition", "attachment;

filename=" + fName);
10 File file = new File(path);
11 try {

12 FileInputStream in = new FileInputStream(file);

13 ServletOutputStream out = response.getOutputStream();
14 byte[] outputByte = new byte[4096];
15
16 while (in.read(outputByte, 0, 4096) != -1) {
17 out.write(outputByte, 0, 4096);
18 }
19 } catch (FileNotFoundException e) {
20 e.printStackTrace();
21 } catch (IOException e) {
22 e.printStackTrace();
23 } finally {
24 in.close();
25 out.flush();
26 out.close();
27 }
28 }

Figure 7. This method is extracted as an example of FileInputStream
from the GitHub corpus. Only the underlined statements and
expressions have data dependences on the focal API call to new
FileInputStream at line 12.



variable or object name is annotated with its static type infor-
mation, which EXAMPLORE uses when canonicalizing variable
names within the code skeleton.

Post-processing
EXAMPLORE normalizes the retrieved set of code examples into
a canonical form so that the user can easily view relevant API
usage features without the need to handle different syntactic
structures and different concrete variable names. Concrete
options for each API usage feature are stored in a MongoDB
database so that the front end can construct a database query
and update the interface based on user selections.

Normalization of Chained Calls. To help developers easily
recognize a sequence of method calls, EXAMPLORE rewrites
chained method calls for readability. Specifically, it separates
chained method calls to different method calls by introduc-
ing temporary variables that store the intermediate results.
For example, new FileInputStream(new File(path)).read(...)
is rewritten to file = new File(path); fileInputStream = new
FileInputStream(file); fileInputStream.read(...);.

Canonicalizing Variable Names. To reduce the cognitive effort
of recognizing semantically similar variables that are named
differently in different examples, EXAMPLORE renames the ar-
guments of the focal API call based on the corresponding pa-
rameter names declared in the official Javadoc documentation
so that all variable names follow the same naming convention.
The rest of the variables are renamed based on their static
types. For example, if the type of the receiver object is File,
we rename its object name to be file, the lower CamelCase of
the receiver type.

Consider the example in Figure 7 where the constructor
FileInputStream(File) is the focal API call. The following
list describes the concrete code segments corresponding to
different API usage features:

• Declarations: File file = new File(path) at line 10.
• Pre-focal method calls: none.
• Guard: the negation of fName == null at line 3.
• Return value check: none.
• Post-focal method calls: in.read(outputByte,0,4096)!=-1 at

line 16.
• Exception handling: e.printStackTrace() for handling
FileNotFoundException at lines 19-20 and IOException at
lines 21-22.
• Resource management: in.close() at line 24.

Visualization
For each API usage feature, EXAMPLORE records the start and
end character indices of the corresponding code for color
highlighting. EXAMPLORE queries the MongoDB database and
instantiates the synthetic code skeleton with canonicalized
options extracted from GitHub code examples and distribu-
tions of counts accumulated across the corpus. When a user
selects particular options in the skeleton, the front end queries
MongoDB and updates the interface accordingly.

USER STUDY
We conducted a within-subjects study with sixteen Java pro-
grammers to evaluate whether participants could grasp a more

comprehensive view of API usage using EXAMPLORE, in com-
parison to a realistic baseline of searching online for code
examples, which is commonly used in real-world program-
ming workflows [3, 20]. We designed a set of API usage
questions, shown in Table 1, to assess how much knowledge
about API usage participants could extract from EXAMPLORE or
online search for a given API method. Questions Q1-7 were
derived from the commonly asked API usage questions iden-
tified in prior work [5]. Q8 asked participants to inspect and
critique a curated code example from Stack Overflow. This
question was designed to evaluate whether users were capable
of making comprehensive judgments about the quality of a
given code example after exploring a large number of exam-
ples using EXAMPLORE, inspired by Brandt et al.’s observation
that programmers typically opened several programming tu-
torials in different browser tabs and judged their quality by
rapidly skimming [3].

API Usage Questions
Q1. How do I create or initialize the receiver object so I can call this API method?
Describe multiple ways, if possible.
Q2. How do I create or initialize the arguments so I can call this API method?
Describe multiple ways, if possible.
Q3. What other API methods, if any, would be reasonable to call
before calling this API method?
Q4. What, if anything, would be reasonable to check before calling this API method?
Q5. What, if anything, would be reasonable to check after calling this API method?
Q6. How do programmers handle the return value of this API method?
Q7. What are the exceptions that programmers catch and how do programmers
handle potential exceptions? Please indicate none if this API method does not throw
any exception.
Q8. How might you modify this code example on Stack Overflow if you were going
to copy and paste it into your own solution to the original prompt?

Table 1. Study task questions for participants to answer for each as-
signed API method. Q1-7 are derived from commonly asked API usage
questions identified by [5]. Q8 prompts the participant to critique a cu-
rated code example from Stack Overflow.

API Methods
Programmers often behave differently when searching online
to learn a new concept compared to when they are reminding
themselves about the details in a familiar concept [3]. Simi-
larly, we anticipated that programmers might apply different
exploration strategies when answering API usage questions
about familiar and unfamiliar APIs. To capture a spectrum of
behaviors, we chose three API methods with which program-
mers might have varying levels of familiarity:

1. Map.get is a commonly used Java method that retrieves the
value of a given key from a data structure that stores data
as key and value pairs.

2. Activity.findViewById is an Android method that gets a
specific view (e.g., button, text area) from an Android ap-
plication.

3. SQLiteDatabase.query is a database query method that con-
structs a SQL command from the given parameters and
queries a database.

Figure 8 shows cropped screenshots of how EXAMPLORE ren-
dered each of these APIs.



Figure 8. Cropped screenshots of how EXAMPLORE renders each of the three APIs included in the study: (a) Map.get (b) Activity.findViewById (c)
SQLiteDatabase.query.

Participants
We recruited sixteen Computer Science students from UC
Berkeley through the EECS department mailing list. Eleven
participants (69%) were undergraduate students and the other
five (31%) were graduate students. Since our study task re-
quired participants to read code examples in Java and answer
questions about Java APIs, we only included students who had
taken at least one Java class. Participants had a diverse back-
ground in Java programming, including one participant with
one semester of Java programming, four with one year, ten
with two to five years, and one with over five years. Two stu-
dents were teaching assistants for an object-oriented program-
ming language course. Prior to the study, twelve participants
(75%) had used Map or similar data structures, six (38%) had
used SQLiteDatabase.query or similar database query methods,
and only three (19%) had used Activity.findViewById.

Methodology
We conducted a 50-min user study with each participant. Note
that our study follows a within-subjects design and both the
order of the assigned conditions (using online search or EX-
AMPLORE to answer API usage questions) and which of the
three API methods were assigned in each condition (Map.get,
Activity.findViewById, or SQLiteDatabase.query) were counter-
balanced across participants through random assignment.

1. Training session (15 min) We first walked the participant
through a short list of relevant Java concepts and terminol-
ogy, such as receiver objects and guards. Then we walked
participants through each user interface feature and an-
swered participants’ questions about both the concepts and
the interface.

2. Code exploration task 1 (15 min) The participant was
given basic information about one of the three API methods
and asked to answer API usage questions Q1-8 by exploring
code examples using the assigned tool, either online search
or EXAMPLORE.

3. Code exploration task 2 (15 min) The participant was
given basic information about another one of the three API
methods and asked to answer API usage questions Q1-8
by exploring code examples using the tool (EXAMPLORE or
online search) that they did not use in the previous task.

4. Post survey (5 min) At the end of the session, participants
answered questions about their experience using each tool
and the usability of individual user interface features in
EXAMPLORE.

In the control condition, participants were allowed to search
for code examples in any online learning resources, e.g., docu-
mentations, tutorial blogs, Q&A forums, and GitHub repos-
itories, using any search engines in a web browser. In the
experimental condition, participants used EXAMPLORE to ex-
plore one hundred code examples that were pre-loaded into
the system.

Some of the API usage questions have multiple possible cor-
rect answers. Before each code exploration task, we reminded
participants that they had 15 minutes to complete the API us-
age questions and that they should aim for thoroughness (i.e.,
list multiple correct answers if they exist) instead of speed
when answering these questions.

RESULTS

Quantitative Analysis
Answering Commonly Asked API Usage Questions
We manually assessed the participants’ answers to Q1-8. An
answer was considered concrete if it contained a code segment,
e.g., map.containsKey(key), or it was specific, e.g., “check
whether the key exists.” As a counter example, a vague an-
swer to the question about how programmers handle the return
value of Map.get (Q6) was, “[other programmers] do some-
thing with the return value [of Map.get].” We considered a
concrete solution to be correct if it could be confirmed by the
official documentation, blogs, or concrete code examples.

Map Activity SQLiteDatabase Overall
Tool Search Tool Search Tool Search Tool Search

Ave. # of Q’s answered correctly 5.0 6.0 6.3 5.0 6.6 3.8 6.0 4.6
Ave. total # of correct answers 8.2 6.0 12.5 4.7 14.6 5.4 11.8 5.7
Ave. # of correct answers per Q 1.6 1.2 2.0 1.1 2.2 1.4 1.8 1.2

Table 2. Statistics about participants’ correct answers to Q1-7. Search
refers to participants in the control condition, and Tool refers to those
using EXAMPLORE.

Table 2 shows statistics about participants’ correct answers to
Q1-7 when using online search or the EXAMPLORE tool. We find
that the effects of using EXAMPLORE are both meaningful in size
and statistically significant: Users gave, on average, correct
answers to 6 out of 7 API usage questions using EXAMPLORE vs.
4.6 questions using the baseline of online search. This mean
difference of 1.3 questions out of 7 is statistically significant
(paired t-test: t=3.02, df=15, p-value=0.0086).

Screencasts of the user study sessions reveal that participants
in the control condition often answered API usage questions
just based on one example they found or by guessing. In



contrast, EXAMPLORE users interacted with the code skeleton
and investigated many individual examples that were relevant
to the question. This may explain why, in Table 2, EXAMPLORE

users gave, on average, twice as many correct answers to Q1-7
as baseline users (11.8 vs. 5.7, paired t-test: t=3.84, df=15,
p-value=0.0016).

Participants using online search provided almost twice as many
vague answers as participants using EXAMPLORE. When answer-
ing Q6 (How do programmers handle the return value of
this API method?), two participants using online search were
unable to find any examples that check the return value of
Activity.findViewById, while all participants gave the correct
answer using EXAMPLORE.

Critiquing Stack Overflow Answers
Q8 asked participants to critique a code example from Stack
Overflow based on other relevant code examples they explored
in the study. Regardless of whether participants had just used
EXAMPLORE or online search, fourteen participants (88%) gave
valid suggestions to improve the Stack Overflow posts. The
majority of critiques (80%) written by participants using EXAM-
PLORE were about safety checks, e.g., how to handle potential
exceptions in a try-catch block. When using online search,
the majority of participants (57%) suggested how to customize
and style the code example for better readability, e.g., adapting
types and parameters when reused to a new client program,
renaming variables, and indenting code.

Post Survey Responses
In the post survey, 13 participants (81%) found EXAMPLORE

to be more helpful for answering API usage questions than
online search. The distribution of their responses on a 7-point
scale is shown in Figure 9. The median level of confidence
that participants had in their answers was higher when using
EXAMPLORE (5 vs. 4 on a 7-point scale, shown in Figure 10).
Figure 11 suggests that EXAMPLORE’s representation of the
commonalities and differences across 100 code examples is
more helpful than overwhelming (5 vs. 3.5 on a 7-point scale).

One source of participants’ accuracy, thoroughness, and con-
fidence when using EXAMPLORE appears to be the data itself,
presented in structured form: P16 wrote, “[EXAMPLORE] pro-
vided structure to learning about API. This structure guides
functionality while still showing variety of use. The frequency
of [each option] shows me if I am looking at a random corner
case or something commonly used.” However, explanations in
natural language are still valued. For example, two participants
requested textual explanations alongside concrete code exam-
ples. P7 stated that, “although I definitely took longer with
the online search, I felt more confident in knowing what I was
doing because I had access to Stack Overflow explanations.”

Qualitative Analysis
We coded participants’ free responses in the post survey for
common recurring patterns. By far the most popular interface
feature named in their free responses (13/16) was the ability
to filter for specific API usage aspects of code examples, e.g.,
declarations, guards, and co-occurring API calls. The second
most popular feature (4/16) was the ability to explore many
examples simultaneously in a summarized form. The long

tail of responses included appreciation for the ease of finding
relevant examples (3/16), the use of color to label different
parts of each code example (2/16), being able to perceive and
retrieve a variety of examples within a skeleton (2/16), which
also gave structure to learning (2/16) and counts to indicate
common practices (1/16).

Figure 9. The majority of participants found EXAMPLORE more helpful
for answering API usage questions.

Figure 10. When using EXAMPLORE, participants had more confidence
in their answers to API usage questions.

Figure 11. Participants’ median level of agreement with the statement
that EXAMPLORE’s high-level view of API usage examples was helpful
was higher than their median level of agreement with a statement that it
was overwhelming.

Several critical aspects of EXAMPLORE were highlighted by their
absence in the control condition, i.e., online search. Nearly
half (7/16) wrote that they wished traditional search had bet-
ter filtering mechanisms, like EXAMPLORE provided, so that
participants could retrieve more consistently relevant results
and/or filter on a more fine-grained basis. A quarter of par-
ticipants (4/16) complained that they had to mentally parse
code examples from the on-line search results. Three partici-
pants complained that they cannot easily assess how common
and uncommon the code examples found through Google or
GitHub searches are: P3 wrote, “One thing that is important is
‘best practice’ which you might not get from reading random
code online, so if I had a way to know what is common and
uncommon, that would be useful.” One participant pointed out
that Google and GitHub searches did not make it easy to view
multiple examples at once: while it was relatively easy to spot
the use of the API call of interest in each code example, "it
was hard to find the specific instances of API usage categories
other than the Focus because the examples would use different
names for different variables."



Participants did point out several areas where the interface
could be improved. Half of the participants stated that the
interface was confusing and hard to learn. Three of the sixteen
participants felt confused or distracted by the many colors
used to highlight different parts of the code examples that cor-
responded with the skeleton. Participants wished for not just
filtering but search capabilities in the interface, and for textual
explanation to be paired with the code, like the curated and
explained examples in many online search results. Two par-
ticipants asked for a more explicit indicator of code example
quality, beyond frequency counts.

The final question of the post survey asked participants to
write about how EXAMPLORE could fit into their programming
workflows. Without any prior questions or prompting about
API learning, nearly half the participants (7/16) wrote that
they would use EXAMPLORE to explore and learn how to use an
unfamiliar API. For example, P4 wrote “[U]sing [EXAMPLORE]
to search for usage of unfamiliar methods could be very help-
ful.” One quarter of the participants mentioned EXAMPLORE

would be helpful to augment the code browsing mechanism
in Q&A sites like Stack Overflow. Two participants wrote
specifically about using EXAMPLORE to learn about design al-
ternatives for an API, regardless of their prior familiarity with
it. Two participants mentioned that they could consult it for
certain specific questions, e.g., what exceptions are commonly
caught. Finally, one participant pointed out that they could use
EXAMPLORE to remind them of uncommon usage cases. Several
participants asked the experimenter, after submitting their post
survey answers, whether EXAMPLORE would be made publicly
available, expressing a sincere desire to use it in the future.

DISCUSSION AND LIMITATIONS
Our study explored if EXAMPLORE can help users explore and
understand how an API method is used. The results show that,
when using EXAMPLORE instead of online search engines, users
can answer more API usage questions correctly, with more
confidence, concrete details, and alternative correct answers.

The EXAMPLORE interface appears to be most beneficial when
learning and exploring unfamiliar APIs. Participants ex-
pressed, in free-response survey answers, the desire to use
EXAMPLORE to explore unfamiliar APIs in the future. Also,
the benefits of using EXAMPLORE described in Table 2 are
most pronounced for the APIs that participants were, in
aggregate, least familiar with: Activity.findViewById and
SQLiteDatabase.query. In contrast, for the API that most par-
ticipants were already familiar with, Map.get, participants an-
swered one less question correctly on average, compared to
online search. Existing online search provided a familiar and
flexible search interface as well as the ability to access learning
resources with textual explanations such as Stack Overflow
posts, documentation, and blog posts. Even so, participants
still provided two more concrete solutions on average, when
using EXAMPLORE for Map.get, indicating that EXAMPLORE can
still be helpful to provide a more comprehensive view of API
usage even for familiar APIs.

The study results suggest that programmers can develop a more
comprehensive understanding of API usage by exploring a
large collection of code examples visualized using EXAMPLORE

than by searching for relevant examples online. However, there
is a trade-off between the EXAMPLORE interface’s expressive
power and its visual complexity. We have a lot of information
about how APIs are used, but showing all of it at once can be
overwhelming. More research is needed in making sure the
most common use cases are answered in a visually simple and
easy-to-interpret manner, while still supporting more complex
investigations. This could, for example, be achieved through
progressive disclosure or other UI design patterns.

EXAMPLORE does not require all mined code examples to be
bug-free. We expect that inadequate examples occur less
frequently in the majority of mined code, i.e., the “wisdom
of the crowd,” but we do not currently guard against stale
examples or low-quality examples. Possible ways of detecting
stale examples in the future include analyzing metadata and
scanning for outdated method signatures. Even if all examples
in the corpus are of equally high quality, sorting the concrete
code examples by length, as the interface currently does, is
not necessarily what programmers want. Alternative sorting
criteria could include metrics like GitHub stars, number of
contributors, and build status. We will surface these signals in
the future user interface so users have additional information
scent when judging quality.

CONCLUSION
Code examples are a key learning resource when learning
unfamiliar APIs. Current tools for searching and browsing
code examples often produce large collections of code ex-
amples that developers only have limited time and attention
to review. In this paper, we introduce the concept of a syn-
thetic code skeleton, which summarizes a variety of API usage
features from a collection of code examples simultaneously
in a single view. EXAMPLORE instantiates the synthetic code
skeleton with statistical distributions and allows a user to drill
down to individual concrete code examples mined from 380K
GitHub repositories. We conducted a within-subjects study
with sixteen Java programmers and found that participants
could answer more API usage questions correctly, with more
detail and confidence, when using EXAMPLORE compared to
searching for usage examples online. Many of these develop-
ers could envision EXAMPLORE fitting into their development
workflows, helping them explore unfamiliar APIs. In future
work, we hope to extend the code skeleton to support differ-
ent programming languages and allow multiple related API
methods to be the focal point of our visualization.

ACKNOWLEDGMENTS
We would like to acknowledge the intellectual and coding con-
tributions of Marti Hearst, Orkun Duman, Julie Deng, Emily
Pedersen, Alexander Ku, and John Hughes. We would like
to thank Anastasia Reinhart who was the summer intern at
UCLA for her design and development of a Chrome exten-
sion for visualizing API usage examples, which serves as an
alternative to this work. Participants in this project are in
part supported through AFRL grant FA8750-15-2-0075, NSF
grants CCF-1527923, CCF-1460325, and CCF-1138996, and
the Berkeley Institute of Data Science.



REFERENCES
1. Frances E Allen. 1970. Control flow analysis. In ACM

Sigplan Notices, Vol. 5. ACM, 1–19.

2. Glenn Ammons, Rastislav Bodík, and James R Larus.
2002. Mining specifications. ACM Sigplan Notices 37, 1
(2002), 4–16.

3. Joel Brandt, Philip J Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 1589–1598.

4. Raymond PL Buse and Westley Weimer. 2012.
Synthesizing API usage examples. In Software
Engineering (ICSE), 2012 34th International Conference
on. IEEE, 782–792.

5. Ekwa Duala-Ekoko and Martin P Robillard. 2012.
Asking and answering questions about unfamiliar APIs:
An exploratory study. In Proceedings of the 34th
International Conference on Software Engineering. IEEE
Press, 266–276.

6. Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and
Tien N Nguyen. 2013. Boa: A language and infrastructure
for analyzing ultra-large-scale software repositories. In
Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 422–431.

7. Felix Fischer, Konstantin Böttinger, Huang Xiao,
Christian Stransky, Yasemin Acar, Michael Backes, and
Sascha Fahl. 2017. Stack Overflow Considered Harmful?
The Impact of Copy&Paste on Android Application
Security. In Security and Privacy (SP), 2017 IEEE
Symposium on. IEEE, 121–136.

8. Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J
Guo, and Robert C Miller. 2015. OverCode: Visualizing
variation in student solutions to programming problems at
scale. ACM Transactions on Computer-Human
Interaction (TOCHI) 22, 2 (2015), 7.

9. Natalie Gruska, Andrzej Wasylkowski, and Andreas
Zeller. 2010. Learning from 6,000 projects: lightweight
cross-project anomaly detection. In Proceedings of the
19th international symposium on Software testing and
analysis. ACM, 119–130.

10. Raphael Hoffmann, James Fogarty, and Daniel S Weld.
2007. Assieme: finding and leveraging implicit
references in a web search interface for programmers. In
Proceedings of the 20th annual ACM symposium on User
interface software and technology. ACM, 13–22.

11. Andrew J Ko, Brad A Myers, and Htet Htet Aung. 2004.
Six learning barriers in end-user programming systems.
In Visual Languages and Human Centric Computing,
2004 IEEE Symposium on. IEEE, 199–206.

12. Nicholas Kong, Tovi Grossman, Björn Hartmann,
Maneesh Agrawala, and George Fitzmaurice. 2012. Delta:
a tool for representing and comparing workflows. In

Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1027–1036.

13. Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner:
automatically extracting implicit programming rules and
detecting violations in large software code. In ACM
SIGSOFT Software Engineering Notes, Vol. 30. ACM,
306–315.

14. Martin Monperrus, Marcel Bruch, and Mira Mezini. 2010.
Detecting missing method calls in object-oriented
software. In European Conference on Object-Oriented
Programming. Springer, 2–25.

15. João Eduardo Montandon, Hudson Borges, Daniel Felix,
and Marco Tulio Valente. 2013. Documenting apis with
examples: Lessons learned with the apiminer platform. In
Reverse Engineering (WCRE), 2013 20th Working
Conference on. IEEE, 401–408.

16. Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham,
Jafar M. Al-Kofahi, and Tien N. Nguyen. 2009.
Graph-based Mining of Multiple Object Usage Patterns.
In Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC/FSE ’09). ACM, New York,
NY, USA, 383–392.

17. Amy Pavel, Floraine Berthouzoz, Björn Hartmann, and
Maneesh Agrawala. 2013. Browsing and analyzing the
command-level structure of large collections of image
manipulation tutorials. Citeseer, Tech. Rep. (2013).

18. Michael Pradel and Thomas R Gross. 2009. Automatic
generation of object usage specifications from large
method traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software
Engineering. IEEE Computer Society, 371–382.

19. Martin P Robillard. 2009. What makes APIs hard to
learn? Answers from developers. IEEE software 26, 6
(2009).

20. Caitlin Sadowski, Kathryn T Stolee, and Sebastian
Elbaum. 2015. How developers search for code: a case
study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191–201.

21. Aditi Shrikumar. 2013. Designing an Exploratory Text
Analysis Tool for Humanities and Social Sciences
Research. University of California, Berkeley.

22. Susan Elliott Sim, Medha Umarji, Sukanya
Ratanotayanon, and Cristina V Lopes. 2011. How well do
search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology
(TOSEM) 21, 1 (2011), 4.

23. Jamie Starke, Chris Luce, and Jonathan Sillito. 2009.
Working with search results. In Search-Driven
Development-Users, Infrastructure, Tools and Evaluation,
2009. SUITE’09. ICSE Workshop on. IEEE, 53–56.



24. Suresh Thummalapenta and Tao Xie. 2011. Alattin:
mining alternative patterns for defect detection.
Automated Software Engineering 18, 3 (2011), 293.

25. Christoph Treude and Martin P Robillard. 2017.
Understanding Stack Overflow Code Fragments. In
Proceedings of the 33rd International Conference on
Software Maintenance and Evolution. IEEE.

26. Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen,
Tao Xie, and Dongmei Zhang. 2013. Mining succinct and
high-coverage API usage patterns from source code. In
Proceedings of the 10th Working Conference on Mining
Software Repositories. IEEE Press, 319–328.

27. Martin Wattenberg and Fernanda B Viégas. 2008. The
word tree, an interactive visual concordance. IEEE
transactions on visualization and computer graphics 14,
6 (2008).

28. Mark Weiser. 1981. Program slicing. In Proceedings of
the 5th international conference on Software engineering.
IEEE Press, 439–449.

29. Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt,
Hridesh Rajan, and Miryung Kim. 2018. Are Code
Examples on an Online QA Forum Reliable? A Study of
API Misuse on Stack Overflow. In Proceedings of the
40th International Conference on Software Engineering.
ACM.

30. Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei.
2009. MAPO: Mining and recommending API usage
patterns. In European Conference on Object-Oriented
Programming. Springer, 318–343.

31. Jing Zhou and Robert J Walker. 2016. API deprecation: a
retrospective analysis and detection method for code
examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 266–277.


	Introduction
	Related Work
	Interfaces for Exploring Collections of Complex Objects
	Learning APIs with Code Examples
	Mining and Visualization of API Usage

	Synthetic Code Skeleton
	Scenario: Interacting with Code Distributions
	System Architecture and Implementation
	Data Collection
	Post-processing
	Visualization

	User Study
	API Methods
	Participants
	Methodology

	Results
	Quantitative Analysis
	Answering Commonly Asked API Usage Questions
	Critiquing Stack Overflow Answers
	Post Survey Responses

	Qualitative Analysis

	Discussion and Limitations
	Conclusion
	Acknowledgments
	References 

