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Figure 1: The Grammar-Preserving Text Saliency Modulation (GP�TSM) rendering technique applied to two paragraphs from a
passage from a GRE reading comprehension test. The lighter the text color that each word is rendered in, the earlier it was cut
in the backend’s recursive sentence compression process. The darkest subset of text can be read as grammatical sentences that
preserve as much of the semantic value of the original document as possible, and every successive level of lighter text can be
added to these darkest sentences—adding detail without breaking grammaticality.

ABSTRACT
Readers �nd text di�cult to consume for many reasons. Summa-
rization can address some of these di�culties, but introduce others,
such as omitting, misrepresenting, or hallucinating information,
which can be hard for a reader to notice. One approach to ad-
dressing this problem is to instead modify how the original text
is rendered to make important information more salient. We in-
troduce Grammar-Preserving Text Saliency Modulation (GP�TSM),
a text rendering method with a novel means of identifying what
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to de-emphasize. Speci�cally, GP�TSM uses a recursive sentence
compression method to identify successive levels of detail beyond
the core meaning of a passage, which are de-emphasized by ren-
dering words in successively lighter but still legible gray text. In a
lab study (n=18), participants preferred GP�TSM over pre-existing
word-level text rendering methods and were able to answer GRE
reading comprehension questions more e�ciently.

CCS CONCEPTS
• Human-centered computing! Empirical studies in HCI.

KEYWORDS
text visualization, human-AI interaction, natural language process-
ing

ACM Reference Format:
Ziwei Gu, Ian Arawjo, Kenneth Li, Jonathan K. Kummerfeld, and Elena L.
Glassman. 2024. An AI-Resilient Text Rendering Technique for Reading
and Skimming Documents. In Proceedings of the CHI Conference on Human

https://doi.org/10.1145/3613904.3642699


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ziwei Gu, Ian Arawjo, Kenneth Li, Jonathan K. Kummerfeld, and Elena L. Glassman

Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA.
ACM,NewYork, NY, USA, 22 pages. https://doi.org/10.1145/3613904.3642699

1 INTRODUCTION
Readers can �nd text di�cult to consume for a variety of reasons
related to the author(s)’ choices and the readers’ skills and context.
First and foremost, theremay be a large volume of text relative to the
time and attention the reader is willing or able to set aside to read it.
In addition, sentences may be long, have ambiguous parses, and/or
have a complex structure, e.g., ‘garden-path sentences’ [113]. The
subset of the language used by the author(s) may not have a high
degree of overlap with the reader’s sight vocabulary [25]. Finally,
the reader may be still learning how to read in that language, or the
reader may have cognitive di�erences or conditions that impede
reading.

Automated text summarization techniques, including but not
limited to crowd-powered systems [10], prompting large language
models (LLMs) [105], and other AI technologies, can address a
subset of these di�culties, i.e., the resulting text may be shorter,
with simpler sentence structures and fewer unusual words [62].
However, unless there is information within the original document
that is truly redundant, the result is a lossy representation of the
original document, regardless of whether the process is abstractive1
or extractive2.

Speci�cally, automated summarization methods can introduce
multiple types of errors: “crimes” of omission, hallucination, and
misrepresentation. These methods may judge some details as insuf-
�ciently relevant and omit them when they are actually crucial to
the reader, given the reader’s particular knowledge, context, pref-
erences, values, and task. Some methods may introduce false or
irrelevant information that is not derived from the original text,
often referred to as hallucinations in the context of generative
AI [46, 67, 109].3 And when summarizers paraphrase or choose
what subset of the original text to preserve in the summary, they
risk shifting the resulting meaning further away from the original
text than the reader would accept, given their goals and context,
if they knew (i.e., misrepresentation). No single summary can be
perfect for every reader because each reader can have their own
context, tasks, and tolerances. While personalised summarization
has been studied for over a decade [98], it still relies on a coarse char-
acterizations of users [95] and there are key aspects of a reader’s
interests, context, and task that are unobservable.

Instances of these errors in AI-generated summaries are impos-
sible for readers to notice unless they also read the entire original
document. Errors of hallucination tend to look plausible at a glance,
errors of omission leave nothing to be noticed in the summary
itself,4 and errors of misrepresentation will only be noticed if they

1A method of summary generation where the system creates a condensed version of
the source text using novel sentences. It rephrases the original content to produce a
coherent summary, potentially introducing new words and structures.
2A method of summary generation where the system selects and extracts whole
sentences or fragments directly from the source text to construct the summary. It does
not modify the original content but rather curates important segments to form the
summary.
3The term confabulation from psychology, described as “honest lying”[36], may be
a more accurate analogy than hallucination, but the latter is more popular among
computer scientists when referring to generative AI.
4This interface challenge is analogous to how users cannot recognize the false positives
of spam detection algorithms just by looking at their inbox, because the decisions are

con�ict with the readers existing knowledge. Recovering from these
AI errors is hard because readers have to (1) �rst notice AI choices
that may or may not re�ect one of these errors, and (2) have enough
context to judge whether or not the AI choices re�ect any of these
errors; these are pre-requisites to the previously proposed human-
AI interaction design guidelines [5], i.e., “support e�cient dismissal”
and “support e�cient correction.” We call an interface that supports
users in noticing, judging, and recovering from AI errors like these
AI-resilient.

One potentially AI-resilient alternative approach to automated
summarization is to instead modify the visual attributes of the
original text to support faster reading of the original document
(skimming). We propose and evaluate such an approach, which we
call Grammar-Preserving Text Saliency Modulation (GP�TSM). Its
novelty comes from the computational method used to determine
whichwords in the original text to de-emphasize—and by howmuch.
Speci�cally,GP�TSM uses a recursive sentence compressionmethod
to identify successive levels of detail beyond the core meaning
of a passage, which are de-emphasized by rendering words with
successively less opacity, e.g., lighter and lighter but still legible
gray text when black text is on a white background. The lighter the
text color that each word is rendered in, the earlier it was cut in
the backend’s recursive sentence compression process. We describe
the approach as "grammar-preserving" because each subset of each
sentence—at any minimum level of opacity the reader chooses to
read—remains grammatical, which supports a more natural �ow of
reading. A formative study in which GP�TSM was semi-automated
(with a human in the loop) validated the value it would provide if
fully automated.

Prior text rendering methods have computed a variety of func-
tions over words and sentences within a document (from uni-
gram frequency [11, 13] to neural-network-based semantic similar-
ity [35, 100]) and rei�ed the results of that computation into a vari-
ety of visual attribute modi�cations including font attributes [11,
13, 73, 82, 89] and background color [35, 92, 100]. In particular,
two previously published ideas that were presented without evalua-
tion proposed helping readers skim by reifying unigram frequency:
Brath and Banissi [13] use font weight to do so, and Biedert et al.
[11] use opactiy. In our �nal user study, we compare font opac-
ity modulated by GP�TSM to font opacity modulated by unigram
frequency (as a control condition we call Word-Frequency Text
Saliency Modulation orWF�TSM).

A within-subjects user study (N=18) demonstrates that the �nal
design of GP�TSM not only helps readers complete non-trivial (GRE)
reading comprehension tasks more e�ciently, it is also strongly
preferred over font opacity modulated by unigram frequency (WF�
TSM). In summary, we contribute:

• The design and implementation of GP�TSM, a recursive
sentence-compression-based text rendering method that sup-
ports reading and skimming

• A formative within-subjects user study that demonstrates
the value of GP-TSM’s text rendering strategy—using a semi-
automated sentence-compression backend

made silently, leaving no trace in the inbox itself; users have to explicitly look at every
email in their spam folder to exhaustively �nd false positives.
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• A summative within-subjects user study that (1) demon-
strates the bene�ts of the fully automated GP�TSM relative
to prior text rendering methods and (2) collects evidence
that GP-TSM’s preservation of grammar at every level of
successively grayed text is key.

2 RELATEDWORK
Made possible by the capabilities of large language models (LLMs),
GP�TSM is an extension of a range of prior work on text summa-
rization and text rendering intended for reading, skimming, and
information retrieval support. In this section, we seek to contex-
tualize GP�TSM within the broader narrative of natural language
processing (NLP) and the foundational role of earlier research on
text rendering and reading and skimming support systems.

2.1 Reading and Skimming
Reading natural language documents can require non-trivial mental
e�ort [44, 45, 75]. In particular, long, complicated sentences can be
hard to understand [113]. Studies from the American Press Insti-
tute [27] show that when a document’s average sentence length
is 14 words, readers understand more than 90% of what they are
reading. At 43 words, comprehension drops to less than 10%. But
long complex sentences remain a common occurrence. For exam-
ple, recent education research articles written in English had an
average sentence length of 24.7 words [23], similar to news text and
biomedical text, which average 24.8 and 24.5 words per sentence
respectively in standard corpora [53].

Given the cognitive e�ort reading requires, readers frequently
resort to skimming, which is a rapid, selective, and non-linear
form of reading [2]. Eye tracking studies [30, 74] validate that
such behavior is extremely common. However, multiple studies
have suggested a signi�cant trade-o� between reading speed and
comprehension [65, 66, 76, 87]. In addition, skimming, a skill that
takes time to learn and employ e�ectively, requires strategy and
attention [29]. In particular, when skimming in unfamiliar contexts,
readers tend to struggle to stay focused, miss key information,
and lack con�dence in their understanding [28, 60, 102]. Studies
have shown that the comprehension of important and unimportant
information from a text was equally degraded by an increase in
reading rate [16, 31, 50].

2.2 Text Summarization Methods
Text summarization can be either extractive or abstractive. Ex-
tractive summarization selects a set of text segments from the
original document(s) and combines the segments to form a sum-
mary. Note that in these approaches, the summary is entirely com-
posed of verbatim content, i.e., words have been removed but none
have been added. The earliest extractive systems selected a set
of sentences [58]. More recent work has also compressed and/or
merged the sentences that are selected [57]. A range of model-
ing [26, 43, 47, 59, 96] and learning [72, 91, 107, 110] methods have
been explored.

One drawback of the extractive approach is that it can be di�-
cult or impossible to concisely capture meaning while only using
verbatim content; this is in contrast to abstractive summarization,

which generates novel sentences to capture the essence of the con-
tent [3, 106, 111]. Abstractive summarization can be more �exible,
concise, and human-readable. Historically, extractive summariza-
tion was more successful in terms of accuracy and coherence, but
recent improvements in natural language generation using LLMs
has made abstractive summarization e�ective and popular [93].

For our speci�c application, only extractive summarization is
suitable. Our goal is to modulate the saliency of words in the origi-
nal text so that users can easily bypass certain words during skim-
ming while maintaining an uninterrupted reading �ow. This goal
aligns with a speci�c family of extractive summarization known
as sentence compression, or compressive summarization. While
traditional extractive summarization predominantly involves se-
lecting whole sentences, compressive summarization aims to select
the shortest subsequence of words within a sentence that yields an
informative and grammatical sentence [64]. This framework allows
for a more concise representation of the original content while
retaining the essence of its meaning. Various techniques have been
developed within this framework [7, 22, 33, 51, 68, 97, 108]. Notably,
our approach introduces a novel feature—a recursive process that gen-
erates multiple nested levels of compression, in which information is
captured at varying degrees of detail. In contrast, while there has
recently been some work on generating a set of summaries that
vary in detail, it has been abstractive, with content at each level
that does not overlap [112].

A range of technologies have been applied to summarization,
from traditional NLP techniques [3, 8, 34, 69] to large language mod-
els (LLMs) [103–105] and even crowd-powered methodologies [10].
The recent improvements in LLMs has signi�cantly increased the
quality of summarization methods, including compressive sum-
marization. The summaries they produce are better in terms of
coherence, grammaticality, and coverage of critical content [32, 94].

There are a variety of systems that employ summarization within
their enhanced reading environments. Speci�cally, many systems
add abstractive and/or extractive summaries to give the reader
additional, shorter, possibly simpler text that augments the original
content. For example, Paper Plain [6] uses AI models to generate
abstractive summaries of each section of a medical paper which
is intended to make the science literature more approachable to
healthcare consumers. Marvista [19], a human-AI collaborative
reading tool, employs an extractive strategy in the "before reading"
phase and automatically chooses a summative subset of text for
users based on their time budget and questions they want to answer.
Marvista then uses AI-generated abstractive summaries to help
readers review and recall important information from articles in the
"after reading" phase. ����L��� [54] describes a quote-extraction
based summary using entity extraction and dependency trees to
complement news headlines and represent potentially important
details from the rest of the article.

However, regardless of the method used, both abstractive and ex-
tractive summarization can introduce signi�cant changes in mean-
ing, e.g., through misinterpretation of the input or unintended
meanings of the output [3, 109]. To mitigate this lossy nature of
summarization methods, our approach supports reading and skim-
ming by adjusting theway text is rendered, keeping all text available
to the user to enable recovery from AI errors, or AI decisions that
do not suit their needs.
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2.3 Text Rendering Modulation Methods
Extensive research has been conducted on text rendering meth-
ods to enhance readability, with a signi�cant focus on font at-
tributes. Prior studies have demonstrated that reading performance
can improve when using a font that is individually optimal for a
reader [9, 18, 24]. However, there is no universally ideal font suit-
able for all readers, and a reader’s optimal font may not always
align with their preferred choice [89, 90]. Building upon this line of
research, a machine-learning-based model named FontMART has
been developed to predict the font that enables the fastest reading
speed for an individual [14]. Our work aims to complement this
research in readability by focusing on making key information
more salient, thereby facilitating both focused reading and e�cient
skimming.

Modulating text saliency is a widely studied aspect of textual
information representation. This technique modi�es the visual at-
tributes of text to promotewords of interest and guide readers’ atten-
tion, making pertinent information more perceptible and thereby
enhancing comprehension and the user experience [12, 42]. We
adopt the term “saliency” based on its de�nition (a “bottom-up,
stimulus-driven perceptual quality which makes some items stand
out from their neighbors”) [42], and its use in augmented real-
ity [85, 88], computer vision [17, 55], and cognitive science [37, 56].

A range of visual strategies have been introduced to promote
text saliency in digital reading environments. Brath’s Visual Encod-
ing Pipeline Extended for Text [12] describes how di�erent types of
textual data, including the literal text itself, can be mapped to visual
attributes, and then drawn as marks in a layout. Brath and Banissi
[13] describe the varied use of typography, or font attributes such as
bold, italic, font size and case, on an individual word level to convey
information in a way that is intended to facilitate skimming and text
analysis. Unlike GP�TSM, multiple visual attributes of text were si-
multaneously varied rather than just text opacity and no controlled
studies were presented that evaluate their e�ectiveness. Biedert
et al. [11] propose a prototype called ����S��� that assigns a
lower text opacity value to non-content words like articles and
conjunctions if skimming is detected from eye tracking. Sto�el et
al. [82] focus on the size of individual words and create thumbnails
by retaining a readable font size of interesting text while shrink-
ing less interesting text. Strobelt et al. [83] surveyed and tested
the e�ectiveness of nine common text highlighting techniques, in-
cluding various font attributes such as font color, font style and
font weight, both individually and in combination. However, their
studies involved tasks such as visual interference examination and
visual conjunctive search, while our studies focus on reading and
skimming. Similarly, Parra et al. [73] explores multiple types of
encoding of information on documents, including font size, font
luminance, and background color lumination/saturation, but for
a di�erent purpose: visualizing neural attention directly on text.
Additionally, Shimabukuro et al. [79] explored character-level omis-
sions to dynamically create abbreviations of text and Chevalier et
al. [20] explored animation techniques to enhance navigating the
revision history of textual documents.

Color as a tool for emphasis and di�erentiation has been em-
ployed in multiple systems [35, 100]. For example, S��� [35] in-
troduced a color-coded system to label di�erent types of (entire)

sentences in scienti�c articles. H�T��� [100] uses sentence high-
lighting at various saliencies, where the saliency of the highlight
corresponds to the position of the sentence in a list ranked from
most to least predicted importance. Semantize [92] conveys multi-
ple predicted attributes, e.g., polarity of emotion and grade level, of
speci�c sentences or paragraphs of a document by rendering them
with di�erent visual attributes, e.g., modulating the background
color according to predicted polarity of emotion and modulating
font size and spacing according to predicted grade level.

GP�TSM is solidly within this existing text rendering modula-
tion tradition. GP�TSM’s primary contribution is in its method for
computing what to de-emphasize. Our approach, recursive sen-
tence compression, enables the visual distinction of multiple nested
grammatical subsets of sentences. As a result, our novel method of
computation also presents a new scope of visual attribute modula-
tion.

There are multiple existing computational methods for deter-
mining text saliency. Both Brath and Banissi [13] and Biedert et al.
[11] weight words based on English language word frequency or
document-level unigram frequency. These word-frequency-based
methods are optimized for highlighting unique words. Unlike GP�
TSM, that does not take into account the core meaning of a text
document or the relationship between words within the same sen-
tence. For example, H�T��� [100] uses a neural-network based
model to rank whole sentences according to their predicted im-
portance to the overall document’s meaning, while GP�TSM uses
an LLM-based model to perform sentence compression recursively
until any additional word removals would change the overall mean-
ing more than a threshold amount (among other considerations
described in Section 3.4).

Many systems use text rendering modulation methods, high-
lights, and/or annotations to visualize their analyses of text in-
place. For example, S��� [35] helps readers skim scienti�c articles
by highlighting sentences about di�erent key aspects of a paper
using di�erent colors, with a density con�gurable by readers. V���
������R����� [52] automatically annotates and highlights text
segments in the detail layer and uses the opacity of the annotation
highlight to indicate the con�dence value from its support-vector-
machine-based active learning component. TextViewer [21], built
for literary scholars, renders text with colored underlines to denote
text that has been tagged, with the saturation value of the underline
corresponding to the absolute value of the tag weight. GP�TSM is
versatile and easily integrable, making it suitable for use in these
and other contexts, much like the other text rendering methods
discussed above.

3 GP�TSM
Building upon the insights gleaned from our review of the chal-
lenges of reading and skimming, existing text summarization meth-
ods, and existing text rendering modulation methods, this section
describes the design and implementation of our proposed text ren-
dering method: GP�TSM. We provide a comprehensive overview of
our design goals, the design space, and our design process, followed
by an explanation of GP�TSM and its implementation.
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3.1 Design Goals
We aspired to design a text rendering interface that alleviates some
of the cognitive demands of reading, skimming, or performing
information retrieval on natural language documents—particularly
those with long, complicated sentences—without compromising
the integrity of the original content. From our design explorations,
we decided that an e�ective interface toward that objective should
have the following requirements:

(1) Remain faithful to the original text. The system should
not automatically reword or add new words or phrases to
the original text. It should preserve the original text, while
rendering it in a way that aids reading, skimming, or infor-
mation retrieval. This principle of preserving the integrity of
the original content is also a primary design goal of a previ-
ously developed tool, Doccurate [84], which was developed
for healthcare, a domain where precise wording is critical.

(2) Integrate seamlessly into existing reading experiences.
The system should complement and not interfere with the
existing digital reading work�ow that people are used to.
It should provide all the functionalities in the same view,
minimizing the overhead of mode and context switching.
This principle also guided HiText [100]; they called this goal
“ergonomic unobtrusiveness.”

(3) Support reading at multiple levels of detail. The system
should help users navigate the full complexity of a text, shift-
ing focus seamlessly between di�erent levels of semantic
coverage, or granularity [70, 111], from the big picture to
the �ne details. It should allow users to decide how much
detail they want to read and, in case they want a closer read,
enable them to do so without requiring any extra action on
the user’s part, e.g., pressing a button to reveal more detail.
Visualizing all levels of detail also means users do not have to
guess whether they care enough about what could be hidden
in order to decide whether to perform an action to reveal
lower levels of detail.

(4) Support skimming without interrupting �ow. The sys-
tem should improve skimming of text while minimizing
the impact on the user’s natural reading �ow. In particular,
as much as possible, it should avoid presenting users with
salient text that is unparsable as a coherent thought, i.e., the
system should present a complete sentence rather than a
phrase or sentence fragment.

(5) Be resilient to AI errors by enabling the reader to (a)
notice, (b) have enough context to judge, and (c) easily
recover from, automated decisions they disagree with.
If the system makes an (automated) judgement call that is
inappropriate given the reader’s values, preferences, knowl-
edge, context, or task, the reader should be able to recognize
that without taking any additional action beyond looking
at the interface itself, and proceed without being negatively
a�ected by it. This design goal adds the critical observation
that noticing an AI’s choice and having enough context to ac-
curately judge an AI’s choice as deserving of preservation or
dismissal are pre-requisites to the previously proposed human-
AI interaction design guidelines [5] “support e�cient dismissal”

and “support e�cient correction.” For example, hidden de-
tails critical to a reader but judged insu�ciently important
to keep by an AI cannot be noticed because they are hid-
den, unless the user is lucky enough to take an action to
reveal them and discover that they disagreed with the AI’s
judgement.

3.2 Design Process
The design of GP�TSM is the result of numerous iterations. To thor-
oughly explore the design space of skimming support interfaces,
we started o� by delineating a diverse set of key dimensions and
the potential options for each (as detailed in Table 1). To ground
our explorations, we constructed prototypes within a browser ap-
plication, each encompassing di�erent combinations of candidate
text attributes, text attribute modulation scopes, interaction tech-
niques, computation scopes, and methods of computing what will
be rendered with those text attributes. This approach helped us
explore key points within the design space without necessarily
implementing all possible feature combinations. In the rest of this
section, we describe the process that led to GP�TSM’s �nal features
and pivotal design choices, using language consistent with Brath’s
textbook on textual visualizations [12].

3.2.1 Text A�ribute to Modify. Similar to ����S��� [11], we
chose to modulate opacity—which, for black text on a white back-
ground, is equivalent to choosing font colors on a gray scale. We
chose opactiy over alternatives like background color or stylistic
indicators such as italics, typefaces, and underlines, because of our
interest in minimising visual distraction. Modulating opacity al-
lows for a graded emphasis on text without disrupting the visual
cohesion of the paragraph, o�ering a smooth reading experience.
Since it is a continuous feature, it can be modulated to varying
degrees to di�erentiate multiple levels of detail.

We also found opacity modulation to be a generally intuitive
mapping of meaning for users. For example, with black text on
a white background, lighter text that has less contrast with the
background denotes detail, while darker text signi�es criticality.
Regardless of the text and background colors, modulating opacity
allows the text containing the details to have less and less contrast
with the background behind it—“fading away” or moving back “into
the background.” We tried altering other font attributes, such as
font hue or width, but found that their meaning was less clear to
participants in early pilot studies.

To ful�ll our design goals, we ensure that even the least opaque
text is still legible, i.e, consistent with guidelines on contrast ratios
provided by WCAG (Web Content Accessibility Guidelines) [15],
so that words that the computational method deems to be details
are not hidden. (If they were hidden, they would be unnoticeable
by a reader who needed them given their context.) Nevertheless,
our design may still pose challenges for certain groups of people,
which we discuss further in the Discussion section.

Deciding to use opacity instead of similar attributes, like font
weight or bolding, was di�cult. Bold text inherently demands at-
tention, drawing the reader’s eye immediately to those words or
phrases [12].While this is e�ective for emphasizing certain sections,
it is contradictory to our goal of de-emphasizing or suggesting skip-
pability. our approach of fading out text provides a more subtle
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Text Attribute Scope of Attribute Modi�cation Interaction Technique Scope of Computation Extractive Summarization Method

highlight opacity character clicking (a button) sentence TF-IDF
highlight color word clicking (a carousel) paragraph constituency tree analysis
font opacity phrase dragging a slider handle document dependency tree analysis
font hue (novel) nested grammatical gesturing (pinch to zoom) corpus linear programming
font size subset(s) of the sentence pressing keys on a keyboard latent semantic analysis
font weight entire sentence scrolling with a mouse autoencoder
font width swiping on a touchscreen large language model
oblique toggling rendering on/o�
typeface
underline
case
background color

Table 1: The design space we explored for interfaces that support reading, skimming, and/or information retrieval, including
5 main parameters and alternative values for each parameter. The space is in�uenced by Brath [12]’s purpose-agnostic
Visualization Encoding Pipeline Extended for Text. The bolded items describe the �nal design of GP�TSM.

indication of detail level without aggressively diverting the reader’s
focus. Bold can also be visually overpowering and might create
visual fatigue over extended reading periods, especially in docu-
ments with frequent emphasis changes [48]. In contrast, our less
obtrusive fading method enables a more balanced and potentially
smooth reading �ow.

3.2.2 Scope of A�ribute Modification. Our chosen scope of attri-
bution modi�cation could be de�ned as word, but words or even
phrases, unlike prior work, are not considered as independent units
of analysis. Instead, we consider grammatical subset(s) of each sen-
tence, which reveal as many levels of successively smaller detail as
the method of computation identi�es during its recursive sentence
compression process. This is aligned with the design goal of sup-
porting skimming without interrupting �ow; one can skim at any
minimum level of opacity (skipping over, if one chooses, the words
between, which are faded even more) and still be reading coherent
sentences that preserve as much of the semantic meaning of the
original as possible.

3.2.3 Interaction techniques, if any. Our choice to focus on desktop
computers instead of mobile devices was in�uenced by studies that
found improved memory and better performance when people read
on desktop computers compared with mobile devices [4, 80]. We
conjecture that desktop environments may o�er a more conducive
setting for extensive reading, particularly for longer and more com-
plex documents, since a larger screen displays more information
in a single view without requiring frequent scrolling or zooming.
Therefore, we concentrated solely on desktop interactions involv-
ing the mouse and keyboard, setting aside interaction alternatives
such as swiping and gesturing.

After implementing and piloting a variety of desktop interac-
tive techniques, including sliders, carousels, and amouse scrolling
mechanisms for transitioning between hiding/revealing di�erent
levels of information granularity, our �nal design of GP�TSM can
just be turned on and o�, by keyboard or mouse. Our rationale for
this is two-fold: rooted in both our design goal of ensuring seamless
integration into existing reading work�ows and allowing readers
to notice and recover from automated decisions they disagree with.
Hiding information interferes with the latter goal, and preliminary

studies indicated that the act of choosing levels interfered with the
former goal as well. These preliminary studies, which included a
mouse-scrolling feature, suggested that such interactive elements
could inadvertently disrupt reading, diverting user attention from
the primary task of comprehension. We also observed that other
interaction methods could overcomplicate the system, which intim-
idated some users due to the steeper learning curve. By designing
a system that automatically determines and displays text saliency
without demanding active user adjustments, we aim to reduce the
cognitive load required for reading, an already demanding task.

3.2.4 Scope of Computation. We consider entire paragraphs when
determining which units of text to modify. This choice, over �ner
grained (e.g., a sentence) or coarser grained (e.g., a document)
alternatives, was motivated by our formative empirical observa-
tions when prototyping at each level. When considering each sen-
tence in isolation, relatively little text within the sentence was
de-emphasized. This was because we attempted to constrain the
core meaning of the un-faded text to be very close to the original
text—in this case, the sentence itself.

However, many paragraphs have an overarching single topic,
especially in certain kinds of writing like non-�ction. Using the
paragraph as the scope of computation provides more leeway to
de-emphasize parts of sentences (and sometimes, eventually even
entire sentences) while still not straying too far from the overall
core meaning of the paragraph. In other words, a typical paragraph
is large enough to yield signi�cant amounts of text for de-emphasis,
but small enough to have a single coherent theme that is the focus
of summarization.

Choosing something larger than paragraphs, such as entire doc-
uments, poses the challenge of the computational method making
even larger choices about what to de-emphasize that a given reader
might disagree with; in other words, it would be deciding on a
larger, more noticeable scale which set of ideas are most critical
to retain, un-faded. GP�TSM—no matter what scale of decisions
an AI is making—allows readers to notice and, without taking any
additional action, recover from di�erences of ’opinion’ between
the user and the AI, but GP�TSM does not prevent annoyance. The
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larger the scale that the AI is “getting it wrong” (for the user), the
more likely a reader may turn GP�TSM o� altogether.

3.2.5 Extractive summarization method. There are many meth-
ods of extractive summarization. We started by exploring classical
syntax-based methods, but found that parser errors and the limited
�exibility of pruning parse trees led to output that was ungram-
matical and/or missing key words. Speci�cally, we tried running
a dependency parser and shortening the sentence by removing
subtrees based on depth and dependency type, similar to Filap-
pova et al. [34]. This frequently removed important contextual
information such as key adjectives and noun phrases. Most exist-
ing extractive summarization methods also failed to achieve the
desired results as they could not be used to generate our multi-
level recursive extractive summary. These observations led us to
explore the potential of an LLM-based approach, given their recent
improvements [38, 78, 86].

3.3 Overview of the GP�TSM System
The GP�TSM visualization re-renders plain text at multiple levels of
opacity; these levels reveal multiple successive recursive levels of
grammatically correct detail within each paragraph. The levels are
determined by successively shortening the passage across multiple
rounds (Figure 2). Words deleted in the �rst round are deemed the
least important, and therefore given the least opacity; words deleted
in the second round are deemed slightly more meaningful and ap-
pear more opaque; and so on. Words that are never removed remain
in full color. In other words, the GP�TSM visualization operates
like this: some text, not entirely relevant to the core meaning of a
sentence, appears lighter than relatively more important text. When
a sentence is arti�cially long and complicated and full of irrelevant
continuations and phrases that add little to the overall meaning,
the opacity of certain words and phrases is reduced based on the
outcome of successive rounds of shortening. When a sentence is
simple, words remain salient.5

3.4 Algorithmic Work�ow
Producing the GP�TSM visualization for a given passage is non-
trivial because it involves ensuring that every level of extraction
remains both grammatical and su�ciently close to the core mean-
ing of a passage, for some designer-set threshold and notion of
closeness. Our approach is powered by a large language model
(LLM). Speci�cally, we prompt OpenAI’s GPT4 with a single para-
graph at a time and ask it to:

“Delete spans of words or phrases from the following paragraph that
don’t contribute much to its meaning, but keep readability:
{paragraph}
Please do not add any new words or change words, only delete words.”

Though an LLM-based approach seemed fairly successful in our
pilots and within the studies reported, we re�ect on the inherent
limitations of our choice of using an AI tool, especially its non-
determinism, in the Discussion section.

5This fading of text, from “In other words...” onwards, was generated directly from our
LLM-based method described in Section 3.3 Implementation.

Figure 2: An illustration of how a paragraph shortens with
each round of extraction. Each level stays grammatical after
shortening. The increasingly faded text at each level before
the �nal most concise extractive summary show what will
be removed at each level; the most faded text at the top level
was removed �rst. What is rendered at the top level in this
�gure is the only rendering of this process that readers see.

While leveraging an LLM is the computational method behind
our recursive sentence compression approach, simply asking an
LLM to do this is insu�cient on its own for three reasons: (1)
sometimes it adds or changes words, (2) the quality of the output
varies, and (3) it only provides one set of words to de-emphasize.
Our approach incorporates solutions to each of these:

Undoing LLM-inserted words and substitutions. Weuse a Sequence-
Matcher6 to identify words that the LLM has added or changed.
These represent rewrites and are hence not allowed as they would
mean the user is no longer seeing the original paragraph. We re-
place substitutions with the original words from the paragraph, and
remove insertions; the result is the post-reversion LLM response.

Improving output quality. Whenever the LLM generates a short-
ened paragraph, it may fall short of ful�lling its prompt, e.g., by
removing words that lead to grammatical errors; only adding or
substituting words; or removing words in a way that changes the
meaning of the text too signi�cantly. We address this by prompting
the LLM with the same paragraph multiple times (8 times in our
case). Empirically, we observed that usually at least one of the eight
paragraphs produced was su�ciently high quality for GP�TSM to
continue.

To automatically identify the highest quality response, we com-
posed a custom heuristic evaluator. This heuristic evaluation as-
sesses response quality based on a combination of four scores:
semantic �delity, response length, paraphrasing frequency, and

6https://docs.python.org/3/library/di�ib.html
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grammatical correctness. The semantic �delity score is the similar-
ity between the original (pre-summarization) paragraph and the
shortened paragraph, calculated using the cosine similarity of their
respective embeddings produced by Sentence Transformers [77].
The length score measures how closely the response’s length aligns
with a preset optimal length, which, based on prototyping, was
set to 85% of the previous level’s length. The paraphrasing metric
quanti�es the inverse of detected insertions and substitutions (as
determined by a SequenceMatcher)—before such insertions and sub-
stitutions were automatically reverted. The grammaticality score
involves re-prompting GPT4 to evaluate the syntax of the response
after reversion, on a crude scale: 0 for ‘bad grammar’, 0.5 for ‘mod-
erately grammatical,’ and 1 for ‘grammatically correct.’7 All four
scores are scaled to range from 0 to 1. These scores are combined,
via averaging, to produce an overall quality measure of each indi-
vidual post-reversion LLM-shortened paragraph. Finally, we select
the highest scoring option, discard the rest, and proceed to the next
level, which takes as input the highest-scoring LLM output that
was just chosen.

Identifying multiple levels of relevance. For each paragraph in
the given passage, we run multiple rounds of LLM-powered extrac-
tive paragraph summarization—each on the results of the previous
round—to identify multiple levels of criticality within each para-
graph. In each round, we use the methods described above to (a)
request 8 responses from GPT4, (b) resolve word addition and sub-
stitution, and (c) select the best option using the evaluator. In the
�rst round, the input is the entire paragraph. In subsequent rounds,
the input is the best output from the previous round.

This recursive extractive summarization process stops when the
LLM “refuses” to cut any words from the summary chosen for the
“deepest” level reached so far. We chose this stopping criterion after
observing that the LLM will often return the paragraph unchanged
if it cannot �nd additional words to delete, and that this is a better
stopping criterion than any other heuristic we experimented with
because it is sensitive to the complexity of the original paragraph.
More complex paragraphs can accommodate more recursive levels
of summarization, while simpler paragraphs may have very few
words that can be cut and still maintain grammaticality. Our recur-
sive process stops when no words are deleted in any of the eight
summarized paragraphs generated by the LLM.

4 USER STUDIES
We evaluated GP�TSM in two studies—a preliminary user study of
the e�ectiveness of the visualization given a partially automated
backend and a summative user study that measures the impact of
GP�TSM when fully automated. In every user study, every interface
being tested was referred to by an arbitrarily assigned color, e.g.,
"reader-green" or "reader-blue", a strategy that has been used in
prior work, e.g., [81].

7The prompt we used was: “Score the following paragraph by how grammatical it is.
{paragraph}
Answer A for grammatically correct, B for moderately grammatical, and C for bad
grammar. Only respond with one letter.” An A was mapped to a 1, a B was mapped to
0.5, and a C was mapped to 0.

4.1 Preliminary User Study
4.1.1 Overview. To understand whether the GP�TSM visualiza-
tion we propose improves reading comprehension and the reading
experience, we �rst conducted a preliminary user study with 18
participants involving a semi-automated human-supervised ver-
sion of GP�TSM. In this phase of our work, our aim was to gauge
the e�cacy of modulating text opacity over nested grammatical
subsets of sentences while setting aside concerns about the quality
of the backend. In other words, we wanted to verify that grammar-
preserving text saliency modulation actually helps, if the eventual
fully-automated AI backend is able to perform as well as the human-
in-the-loop (partially automated) AI backend we used in this study.

Our decision to employ such a partially automated approach
stems from emerging practices in prototyping AI and NLP sys-
tems [99, 101], which argue that, given the signi�cant e�ort and
time required to verify output quality of a production-ready AI-
powered system, Wizard of Oz-like techniques that employ human-
veri�ed AI outputs should be used �rst before deciding whether to
implement the actual AI system.

Our preliminary study evaluates the exact same visualization
as the eventual fully automated GP�TSM system, but instead of
automatically choosing the best response from GPT4, a human
inspector picked the response they believed was best, e.g., had the
least rephrasing, and then manually reverted any rephrases in the
chosen response. When necessary, the human inspector also edited
the response to �x ungrammaticality.

One additional interactive variant was included as an extra con-
dition for comparison in this preliminary study, which was not
included in the �nal fully automated GP�TSM evaluated in the sec-
ond study. In this variant, a slider or mousewheel a�ordance can
be used to hide text below a certain level of opacity. It, however,
partially violates the design goals: even though it is trivial to re-
veal hidden levels of detail by moving the slider, unless the slider
to set to its lowest setting, which is equivalent to the static (and
�nal) version of GP�TSM, it is not possible for the reader to notice
and recover from automated decisions they disagree, unless they
remember what was hidden.

We were interested primarily in the following questions:

• How does the GP�TSM visualization a�ect people in reading
and skimming?

• What is the user experience like when using the GP�TSM visu-
alization for reading and skimming?

• What kinds of value, if any, does interactive granularity control
provide for readers?

In summary, to study these questions, we designed a within-
subjects design with three conditions: HITL�GP�TSM (Human-
in-the-Loop GP-TSM), HITL�GP�TSM�I���������� (Human-in-
the-Loop GP-TSM with interactive granularity), and C������.
HITL�GP�TSM is our partially-automated GP�TSM visualization,
with only a simple toggle to turn it on and o�; HITL�GP�TSM�
I���������� added interactive granularity to HITL�GP�TSM; and
C������ was simply presenting the original plain text. All condi-
tions used the same font and font size (Lato, 14pt). Figure 3 presents
a screenshot of the HITL�GP�TSM�I���������� condition.
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Figure 3: Screenshot of theHITL�GP�TSM�I���������� interface in the preliminary user study. The (static)HITL�GP�TSM
interface is exactly the same, but without the sliders or the responsiveness to mouse scrolling to hide segments of text below a
certain level of opacity.

4.1.2 Procedure, Participants, Conditions, and Measures. We re-
cruited 18 participants (8 female and 10 male; 8 between 19-24
years of age and 10 between 25-34 years of age) from university
mailing lists at an R1 university in North America. Participants re-
ceived a $20 Amazon gift card as compensation. Our screen criteria
was: “Participants need to be �uent in English and over 18 years of
age.” Participants’ self-reported English reading pro�ciency was rel-
atively high (asked to rate pro�ciency out of ten, with ten highest:
M=8.38 (SD=1.37).

Our study was split into the following parts: informed consent,
three sequential reading tasks, and a �nal survey. Prior to starting
each task, each participant went through a short walk-through of
the task and a�ordances of the assigned interface condition. Each
participant was given up to 10 minutes to complete each reading
task, and asked to complete the task as fast as they could to the
best of their ability. The entire study took about 60 minutes.

Each reading task was completed in a separate interface condi-
tion (HITL�GP�TSM, HITL�GP�TSM�I����������, or C������).
Participants encountered each interface and each reading task ex-
actly once, and both the reading task order and condition order was
counterbalanced across participants. Speci�cally, we performed a
partial counterbalancing of passages to conditions that ensured
each passage appeared the same number of times in each condition,
and in each condition in each position. Were there any substantial
di�erences in di�culty between passages, this counterbalancing
reduces the e�ect such a di�erence may have, however we only
sampled half of an entire counterbalancing set, which is why subse-
quent analysis described in the results uses a mixed e�ects model.
We refer to passages as R1, R2, and R3.

We chose Graduate Record Examinations (GRE) passages and
reading comprehension questions8 as our tasks, speci�cally the
‘Long Passages’ subsections of the GRE Verbal Reasoning section,
each with exactly four questions. They are a relatively standardized
measure of reading comprehension; they are speci�cally designed
to require close reading, measure participants’ understanding of
the text, are standardized to have similar di�culty, and all ques-
tions count equally towards the �nal score [61]. Notably, the three
selected passages are of comparable length, with word counts of
472, 446, and 444, respectively.

After each reading task, participants completed a questionnaire
to record their re�ections on their experience and perceived dif-
�culty of the task in the assigned condition. Questions included
an overall rating of the interface and NASA TLX survey ques-
tions, and two questions about self-rated task performance. The
HITL�GP�TSM�I���������� and HITL�GP�TSM conditions had
four additional questions about the visualization; and HITL�GP�
TSM�I���������� had another two additional questions about the
interactive granularity. After �nishing the reading tasks, partici-
pants were asked to �ll out a post-study survey to indicate their
preferences across all three conditions and provide further qualita-
tive feedback. Post-study surveys are provided in Appendix A.

4.1.3 Results. We analyzed reading task results with a three-factor
(repeated measures) ANOVA mixed e�ects model; speci�cally, in-
vestigating each dependent variable on �xed factors Condition,
Passage, and Order (the position of the task, �rst second or third
in the sequence) and any interaction e�ects among these factors,
controlling for the random factor of Participant. Satterthwaite’s

8All the passages and questions we used are from publicly available GRE Practice Tests
provided by the Educational Testing Service (ETS).
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method was used to estimate denominator degrees of freedom. Pair-
wise comparison with Tukey’s HSD (with U=0.05) was conducted
between each of the three conditions and three passages. Hereafter,
we refer to these methods as ANOVA and Tukey’s test, respectively.

ANOVA analysis shows a signi�cant main e�ect of Condition on
reading comprehension scores (?=.03, �2,11.3=4.81). Using Tukey’s
test, we found that, compared to participants using C������, par-
ticipants with access to interactive granularity (HITL�GP�TSM�
I����������) scored signi�cantly better on reading comprehension
questions(?=0.047)—answering approximately three fourths of an
additional question correctly out of four. Participants in HITL�GP�
TSMwere not far behind, though the di�erence was not signi�cant—
they answered approximately half an additional answer correctly
out of four, relative to participants in C������. This can be seen in
Figure 4 and alternatively in a di�erent type of encoding in Figure 8
(in Appendix B).

ANOVA analysis also found a signi�cantmain e�ect of Condition
on time spent completing each reading task (?=.022, �2,10.6=5.52).
Participants using HITL�GP�TSM completed their reading compre-
hension questions in only 7.9min (SD=1.9min) on average, which
Tukey’s test shows was signi�cantly faster (?=0.029) than partici-
pants in C������, which completed their reading comprehension
questions, on average, 1.4 minutes later, at 9.3min (SD=1.2min).
Other tests do not reach signi�cance.

Participants using HITL�GP�TSM�I���������� were not signi�-
cantly faster than C������, but this may have been due to e�ects
that would ultimately fade with additional use if this were deployed
in the wild, i.e., some participants spent some of their time playing
with the interactive elements, “trying out di�erent widgets” and
“�guring out what exactly the mouse and sliders do.”

Participants generally expressed a preference for the 2 GP�TSM
conditions over C������. ANOVA analysis shows a signi�cant
main e�ect of Condition on participants’ answers to the questions
in Table 2, which were asked after each reading task. Tukey’s test
shows that HITL�GP�TSM received signi�cantly more positive rat-
ings from participants than C������ in 5 out of the 9 questions that
were asked in both conditions, for overall experience, how mentally
demanding the task was in that condition, how hurried or rushed
they felt,, ability to recognize key points in the passage and ability to
recognize how key points were supported by additional detail. HITL�
GP�TSM�I���������� only received signi�cantly more positive
ratings from participants compared to C������ on the question
about overall experience.

These preliminary results verify the usability and helpfulness of
the GP�TSM visualization in supporting reading comprehension,
suggesting that it would be worthwhile to implement and evaluate
a fully automated version of GP�TSM.

The bene�ts of interactive granularity were less clear cut. While
the HITL�GP�TSM�I���������� condition also results in signi�-
cantly better performances and reading experience than C������,
the di�erence between HITL�GP�TSM�I���������� and HITL�GP�
TSM is not signi�cant. Moreover, only HITL�GP�TSM results in
both signi�cantly faster task completion and signi�cantly lower per-
ceived di�culty. Therefore, we decided not to carry the feature of
interactive granularity forward into the next stage of development.

Figure 4: In the preliminary user study, HITL�GP�TSM�
I���������� resulted in signi�cantly better performance
on the reading comprehension task than C������—on the
order of nearly an entire reading comprehension question
out of a total of 4, though participants in the HITL�GP�TSM
condition were not far behind. In the HITL�GP�TSM condi-
tion, participants completed their reading comprehension
tasks signi�cantly faster than when using the C������. The
error bars represent standard error.

4.2 Main User Study of the fully automated
GP�TSM

4.2.1 Overview. After implementing a fully automated version of
GP�TSM, described in Section 3.4, we conducted a user study with
a separate set of 18 participants to evaluate the e�cacy of the fully
automated static GP�TSM, using a very similar study format. This
time, we were interested primarily in the following questions:

• How does the fully automated GP�TSM a�ect reading compre-
hension? Reading experience?

• How does GP�TSM compare to the nearest previously published
text saliency modulation method for reading and skimming?

• Is the rendering of multiple nested grammatical subsets of
sentences resulting from recursive extractive summarization
intelligible to users?

• What is the impact of preserving the grammaticality of each
nested subset of each sentence in GP�TSM provide on users,
relative to a version of GP�TSM that does not preserve gram-
maticality?

To answer these questions, we modi�ed the preliminary study
design in the following ways:
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Question Statements GP-TSM GP-TSM-I Control

How would you rate your overall experience in this interface? 5.61 (1.24)* 5.44 (1.25)* 4.06 (1.21)

How mentally demanding was the task? [Lower is be�er (LIB)] 4.33 (1.37)* 4.56 (1.46) 5.5 (1.29)

How physically demanding was the task? (LIB) 1.94 (1.35) 2.28 (1.41) 2.67 (1.71)

How hurried or rushed was the pace of the task? (LIB) 2.72 (1.45)* 3.17 (1.62) 4.28 (1.67)

How successful do you think you were in accomplishing the task? 5.11 (1.41) 5.33 (1.14) 4.56 (1.50)

How hard did you have to work to accomplish your level of performance? (LIB) 3.94 (1.21) 4.17 (1.20) 4.94 (1.43)

How insecure, discouraged, irritated, stressed, and annoyed were you during the task? (LIB) 2.67 (1.50) 3.06 (1.55) 3.78 (1.90)

I could recognize the key points in the passage. 6.11 (1.02)* 5.89 (1.08) 5.0 (1.37)

I could recognize how the key points are supported by additional detail in the passage. 5.89 (1.13)* 5.5 (1.29) 4.78 (1.56)

The system’s choice of what to gray out and what to keep at full font weight made sense to me. 5.61 (1.42) 5.78 (1.31) N/A

I think I know why certain words were lighter than others. 5.67 (1.24) 5.83 (1.25) N/A

I found it helpful that certain words were lighter than others. 5.44 (1.20) 5.67 (1.28) N/A

The di�erent levels of gray helped me see the relationships between di�erent parts of sentences. 5.28 (1.23) 5.22 (1.35) N/A

Table 2: Statistics of scores in the survey after each reading task. For brevity, we use GP�TSM for HITL�GP�TSM and GP�TSM-I
for HITL�GP�TSM�I����������. Participants were asked to rate their agreement with statements related to their reading
experience on a 7-point Likert scale from “Strongly Disagree” (1) to “Strongly Agree” (7). The questions 2 through 7 (and their
scales) were adapted from the NASA Task Load Index [39]. “LIB” stands for “Lower is be�er.” Statistics in column 2, 3, and 4
are presented in the form of mean (standard deviation). ANOVA analysis shows a signi�cant main e�ect of Condition on
participants’ answers. Statistically signi�cant (p < 0.05) di�erences compared with C������ through Tukey’s HSD tests are
marked with a *. For the last four statements, which concern the text opacity visualization and thus do not apply to the control
condition, signi�cance was calculated based on just the two remaining experimental conditions.

First, the interactive granularity condition was replaced with
WF�TSM, which we identi�ed as the nearest previously published
text saliency modulation method for reading and skimming. As
in [11],WF�TSM modulates font opacity, but is based on unigram
frequency [11, 13]. In other words, words that appear less frequently
are rendered more opaque inWF�TSM, and more frequent words
are less opaque. It is worth noting that the percentage of words
that are less than fully opaque in WF�TSM is comparable to that
in the GP�TSM condition, so any e�ects we observe are not due to
how many words are grayed out, but which words are grayed out.

Second, we added a second study component to the end, in
which users experience and are asked to re�ect on reading the same
passage in two di�erent conditions: GP�TSM and a new control,
NGP�TSM. NGP�TSM is GP�TSM with grammaticality constraints
removed from both places within its work�ow: the LLM prompt
and the LLM response evaluator. Speci�cally, the phrase but keep
readability in the GP�TSM prompt was replaced with Don’t worry
about grammar,9 and the grammaticality score was removed from
the evaluation heuristic, and hence un-enforced. In other words,GP�
TSM enforces grammaticality at everyminimum level of opacity and
NGP�TSM does not; asking participants to compare them helps us
answer our research question about the criticality of grammaticality
enforcment to the success of GP�TSM.

9The modi�ed, non-grammar preserving extractive summarization prompt, in its
entirety, was: “Delete spans of words or phrases from the following paragraph that don’t
contribute much to its meaning. Don’t worry about grammar:
{paragraph}
Please do not add any new words or change words, only delete words.”

Speci�cally, this means that after participants �nished all the
reading tasks and the post-all-reading-tasks survey thatwere present
in both the preliminary user study and this user study, we asked
them to participate in a 5-minute survey where we presented them
with a view of the same passage rendered twice, side by side, once
with GP�TSM and once with NGP�TSM. An example is included
in Appendix C. We counterbalanced the presentation order of the
two passages to ensure that each appeared on the left and right
sides an equal number of times. We then inquired if participants
could discern any di�erences between the two and, if so, to specify
those di�erences. Additionally, we sought their preference between
the two visualizations. This part of the study was exploratory and
preliminary, meant to give us an indication of the value grammar
preservation adds to our system.

All other aspects, including the C������ condition, the chosen
reading passages and the counterbalancing of conditions, passages,
and their respective pairings, remained consistent with the pre-
liminary study. Figure 5 presents screenshots of the GP�TSM and
WF�TSM conditions in the main user study, each displaying the
same passage.

While exact timing information was not recorded, the fully au-
tomated GP�TSM took approximately 2-3 minutes to compute and
render the GRE Long Passages texts for each reading task. This
time did not a�ect participants’ task time because the results were
cached.

4.2.2 Participants. We recruited a separate set of 18 participants
(7 self-identi�ed as female, 10 as male, and 1 as non-binary; 7 were
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Figure 5: Screenshots of the GP�TSM (left) andWF�TSM (right) interfaces in the main user study.

between 18-24 years of age, 10 between 25-34 years of age, and 1
between 35-44 years of age) from university mailing lists at an R1
university in North America. None of them previously participated
in the preliminary user study. Participants received a $25 Amazon
gift card as compensation. Participants’ self-reported English read-
ing pro�ciency was relatively high, when asked to rate pro�ciency
out of ten, with ten highest: M=8.59 (SD=1.71).

4.2.3 �antitative Results. We used the same statistical analysis
process as in the preliminary study (Sec. 4.1.3) to analyze the reading
task results and Likert survey questions.

Overall, we �nd that participants performed signi�cantly bet-
ter when using GP�TSM compared to C������, and when using
C������ compared to WF�TSM. Participants also completed tasks
signi�cantly faster when using GP�TSM, compared to both WF�
TSM and C������ (Figure 6 and alternatively Figure 9). Speci�cally,
ANOVA analysis shows a signi�cant main e�ect of Condition on
reading comprehension scores (?=.02, �2,11.3=4.79), and Tukey’s
test shows that participants earned signi�cantly higher scores when
using GP�TSM compared to participants using C������ (?=.021).
Tukey’s test also shows thatWF�TSM was signi�cantly worse than
C������ (?=.045).

ANOVA analysis shows a signi�cant main e�ect of Condition
on task times while achieving these reading comprehension scores
(?=.0026, �2,10.6=6.72). Tukey’s test shows that, when using GP�
TSM, it took participants, on average 8min 7s to complete the
reading task (SD=1min 36s), which was, on average, about a minute
faster thanwhen using theC������ (M=9.25min, SD=1min 4s)(?=0.019).
Participants usingWF�TSMwere slightly slower than the C������
by 15 seconds on average (M=9.5min, SD=49s), though that dif-
ference was not signi�cant. The di�erence between GP�TSM and
WF�TSM, however, was still signi�cant (?=0.003).

Table 3 shows participants answers to questions asked immedi-
ately after each reading task, with some exceptions when the ques-
tions are irrelevant in a given condition. ANOVA analysis shows a
signi�cant main e�ect of Condition on their answers. Overall, par-
ticipants generally expressed preference for GP�TSM overWF�TSM
and C������. Tukey’s test shows that GP�TSM received signi�-
cantly more positive ratings from participants than C������ in 4

Figure 6: Participants performed signi�cantly better and sig-
ni�cantly faster in the reading comprehension task when
usingGP�TSM compared to the control conditions in the user
study. The error bars represent standard error.

out of the 9 questions that were asked in both conditions (?<0.05),
for overall experience, how mentally demanding the task was in that
condition, how hard they had to work in that condition, and recog-
nizing key points in the passage. GP�TSM also received signi�cantly
more positive ratings from participants thanWF�TSM in 6 out of
the 9 questions that were asked in both conditions (?<0.05). These
questions included all of the same questions that were signi�cant
for the GP�TSM-C������ comparison and additionally included
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Question Statements GP-TSM WF-TSM Control

How would you rate your overall experience in this interface? 5.52 (1.45)*† 4.1 (1.19) 4.35 (1.32)

How mentally demanding was the task? [Lower is be�er (LIB)] 3.98 (1.46)*† 5.21 (1.48) 5.13 (1.3)

How physically demanding was the task? (LIB) 1.91 (1.34) 1.98 (1.54) 1.85 (1.62)

How hurried or rushed was the pace of the task? (LIB) 3.15 (1.88) 4.49 (1.91) 4.35 (1.72)

How successful do you think you were in accomplishing the task? 5.09 (1.37)* 3.87 (1.56) 4.61 (1.48)

How hard did you have to work to accomplish your level of performance? (LIB) 3.65 (1.16)*† 4.97 (1.52) 4.78 (1.43)

How insecure, discouraged, irritated, stressed, and annoyed were you during the task? (LIB) 2.32 (1.38)* 4.57 (2.1) 2.29 (1.31)

I could recognize the key points in the passage. 6.16 (1.04)*† 5.12 (1.11) 5.23 (1.06)

I could recognize how the key points are supported by additional detail in the passage. 5.9 (1.09) 4.98 (1.25) 5.38 (1.46)

The system’s choice of what to gray out and what to keep at full font weight made sense to me. 5.91 (1.67)* 2.38 (1.44) N/A

I think I know why certain words were lighter than others. 5.36 (1.14)* 4.83 (1.21) N/A

I found it helpful that certain words were lighter than others. 5.67 (1.81)* 3.12 (1.33) N/A

The di�erent levels of gray helped me see the relationships between di�erent parts of sentences. 5.19 (1.22)* 2.41 (1.25) N/A

Table 3: Statistics of scores in the survey after each reading task. Participants were asked to rate their agreement with statements
related to their reading experience on a 7-point Likert scale from “Strongly Disagree” (1) to “Strongly Agree” (7). Questions 2
through 7 (and their scales) were adapted from the NASA Task Load Index [39]. “LIB” stands for “Lower is be�er.” Statistics in
column 2, 3, and 4 are presented in the form of mean (standard deviation). ANOVA analysis shows a signi�cant main e�ect of
Condition on participants’ answers. Statistically signi�cant (p < 0.05) di�erences compared withWF�TSM and C������ are
marked with * and †, respectively. For the last four statements, which concern the text opacity visualization and thus do not
apply to the control condition, signi�cance was calculated based on the two experimental conditions.

how successful they thought they were and how insecure, discouraged,
etc. they felt. Finally, in the questions which were only asked in the
GP�TSM andWF�TSM conditions because they asked speci�cally
about opacity modulation which was not present in C������, GP�
TSM received signi�cantly better Likert scale ratings thanWF�TSM
for all 4 questions (last 4 rows of Table 3), which were all about
the intelligibility of why certain words were less salient and their
helpfulness, especially for seeing the relationships between di�erent
parts within sentences.

After experiencing all the conditions, participants were asked
to rate their agreement on a 7-point scale (7 being the highest)
with the following statement for each condition: “I would like to
use [Condition] to read online text of interest to me in the future”.
GP�TSM received a mean agreement score of 5.8 (SD=1.8) while
C������ received a mean agreement score of 4.7 (SD=1.3) andWF�
TSM received a mean agreement score of 3.3 (SD=2). This di�erence
was signi�cant (?<0.05) between GP�TSM and both C������ and
WF�TSM using additional pairwise unpaired t-tests.

After experiencing all the conditions, participants were also
asked to directly rank conditions. Participants expressed a strong
preference for GP�TSM over WF�TSM and C������ (Figure 7).

4.2.4 �alitative Feedback. Overall, participants were positive
about GP�TSM and its functionality. Below, we group participants’
responses to the survey questions10 around a set of themes that
were frequently mentioned.

10What did you like about the interface?
What did you not like about the interface?
What do you wish the interface had?

Figure 7: Participants’ rankings of the 3 conditions in terms
of their helpfulness for reading comprehension tasks

Improved Reading E�ciency. Twelve out of 18 participants appre-
ciated how text saliency was modulated on the GP�TSM interface,
noting that it facilitated more e�cient reading by letting them skip
words but still grasp the gist of the passage (P1, P2, P3, P5, P6, P7, P9,
P12, P14, P15, P16, P18). For example, P2 wrote, “My reading became
faster and less congested [using GP�TSM] because I could easily skip
over and ignore words that were grayed out if I simply wanted to get
the main idea of the passage.” Further, P1 commented on how easy
it was for “the structural logic of the passage to be absorbed” given
GP�TSM’s multi-level visualization.
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As for the mechanism by which reading e�ciency was improved,
participants provided interesting re�ections on howGP�TSM shaped
their reading experience. It seemed that GP�TSM facilitated a two-
step reading process where participants “�rst skimmed the black
words for a quick grasp of the gist and then went back to certain
sections to read more details” (P17). For instance, P6 observed, “The
interface almost allowed me to read the passage in two ways. One
way was to read each word, regardless of color like normal. But, alter-
natively, if I just read the black text I got the crux of the argument
with none of the additional �ller.” P10 re�ected on their question
answering procedure speci�cally: “I was better able to search back
through the text to �nd key words or ideas that related to the questions
I was trying to �nd answers for. I felt that I could continuously read
the bold words and they formed understandable sentences.”

Sensible Visualization. Participants highlighted that the graying
was “pretty consistent and reasonable” to them (P9), with a lot of
comments on how they agreed with what the system chose to gray
(P2, P7, P12, P13, P16, P17), though P14 complained about the fact
that sometimes “certain transition words are in gray,” which “prevents
[P14] from picking up the transition logic between two elements in a
sentence, or between two sentences.”

Participants also commented on the text visualization itself,
pointing out that the graying was “natural” (P11) and “not too
much drama but provided just the right amount of contrast for en-
gaging reading” (P14). Overall, participants found that the system’s
design helped them focus on key points and read more e�ciently
(P1, P3, P7, P8, P16, P17). Some mentioned they were excited about
using GP�TSM in the future (P11: “I would want to use [GP�TSM] to
read my history readings.” ), possibly as a Chrome extension.

Explanation Needed. Despite a broad preference for the GP�TSM
interface, participants also o�ered several suggestions for improve-
ment. A recurrent theme was the desire for more explicit guid-
ance, which reveals that not all participants quickly and intuitively
grokked what the levels of gray meant. For example, P2 suggested
that “a prompt that explained why some words were grayed out could
have been helpful.” Similarly, P12 noted that “it would have helped
to have a tutorial to understand why some text was more gray.”

Readability. Others o�ered legibility-related suggestions and
requests for customization about the visual attribute being modi�ed.
For instance, P6 suggested using “entirely di�erent colors like RGB”
instead of shades of gray. P16 complained that “the lightest gray text
was a bit di�cult to read; I wish it could be a little darker.” There are
also font-size-related legibility concerns. For example, P12 thought
“the text was too small and close together,” and P14 wanted to see “an
A+/A- icon by the side,” so they could enlarge the font.

Interactivity. P2 and P15 suggested additional features to interact
with the grayed-out words. P15 proposed a slider to allow users to
“customize the degrees of graying” and P2 wished they could “put
away the grayed out words” entirely so they could focus on reading
the words in black (a feature previously supported by HITL�GP�
TSM�I����������).

4.2.5 GP�TSM vs. NGP�TSM: the Comparison Interview. As de-
scribed in Sec. 4.2, after completing all the reading tasks and re-
�ecting on the three conditions of GP�TSM, WF�TSM, and C���
����, all the participants looked at the same passage shown twice,
side by side, rendered with GP�TSM and NGP�TSM—one enforcing
grammaticality at every minimum level of opacity and the other
not. Fifteen (15) out of all 18 participants perceived a di�erence
between the grammar-preserving and non-grammar-preserving
renderings, although some could not specify exactly what the dif-
ference was. For instance, P2 noticed, “[GP�TSM] seems to gray out
longer chunks of text, while [NGP�TSM] grays out a lot of single words.”
P11 mentioned, “In [GP�TSM], the transition is much more natural.
In [NGP�TSM], honestly, I don’t understand why certain words are in
gray.” P17 reported, “I actually didn’t feel that much a di�erence, but
I seemed to have an easier time reading in [GP�TSM].”

Half (9) of the 18 participants successfully identi�ed, to varying
degrees, that the key di�erence was in grammaticality. While some
only sensed the di�erence, others were able to articulate speci�-
cally the grammatical errors in the NGP�TSM case. For example, P9
successfully observed, “[NGP�TSM] grays out many articles, preposi-
tions, and other determiners, while [GP�TSM] doesn’t.” Similarly, P18
elaborated, “[NGP�TSM] grays out a lot of ‘the’, ‘a’ and ‘to’, which is
a little bit annoying to me. Those words may not carry much meaning,
but they are still important to the structure of sentences.”

As for user preferences, all 15 who perceived the di�erence
between the two interfaces preferredGP�TSM toNGP�TSM because
they felt it enabled them to achieve better comprehension and
higher reading e�ciency. For instance, P13 said, “I like [GP�TSM]
better. It just makes more sense to me. When I skipped the gray parts
I still understood everything.” P16 explained, “I prefer [GP�TSM]
because I can completely skip words in gray here but [in NGP�TSM] I
still have to read some of the gray text to understand what is going
on.” In summary, this part of the study provides evidence that GP�
TSM’s preservation of grammar at every level is key to the observed
improvement in reading e�ciency and user preference.

5 DISCUSSION
These user studies demonstrate the bene�ts of Grammar-Preserving
Text Saliency Modulation (GP�TSM) for English reading compre-
hension. Participants responded positively to the chosen visual text
attribute to be modi�ed, i.e., text opacity, and especially strongly to
the strategy by which text opacity was modulated, i.e., nested gram-
matical subsets of sentences that revealed layers of detail around
the core of each sentence. One participant had reservations about
the lack of predicted importance that the backend recursive extrac-
tive summarization process often assigned to transition words; this
is evidence that the design goal concerning participants’ ability to
notice and recover in situations when they disagree with an auto-
mated judgement has been ful�lled, i.e., “AI-resilience”. In spite of
that keen observation, which was possible due to GP�TSM’s design,
there was a general consensus that GP�TSM’s choices about which
sections to gray out were superior toWF�TSM, which is the nearest
alternative method of text saliency modulation in the literature. No-
tably, the impact of the grammaticality enforced within GP�TSM’s
backend work�ow was clearly perceived by most users; it garnered
attention and praise in interviews when participants could see
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GP�TSM side by side with its non-grammaticality-enforcing twin,
NGP�TSM. Multiple measures suggest that GP�TSM enhances read-
ing e�ciency, overall user experience, and reduces the perceived
di�culty of reading.

By far, our most compelling quantitative evidence are the gains
in performance and decreases in task time when using GP�TSM,
compared to the controls. Participant performance on standardized
test questions is less subjective than self-reported e�cacy, which
can be a�ected by social and cognitive biases, such as the lab setting,
wanting to please the researchers or guessing the hypotheses.When
the relative gains in e�ciency are considered alongside �ndings
from post-task surveys and qualitative feedback, there is strong
evidence that GP�TSM, as a visualization tool, supports faster and
improved reading comprehension for English readers.

The beauty of the GP�TSM technique lies in its simplicity: at its
core, all GP�TSM does is change the visual saliency of words by ad-
justing their opacity. This preserves the integrity of the original text
and minimizes “ergonomic obtrusiveness” [100] while providing
readers with a form of “contextual cuing” to arm them with “inci-
dental knowledge about global context”, which they can harness
to better assign visual attention and memory when reading [40].
By showing multiple levels of detail at once with successively less
opacity, GP�TSM empowers readers to freely choose their level of
engagement with the material. By preserving grammaticality at
each level, GP�TSM supports a coherent reading and skimming
experience. The evidence from our user studies indicates that all
our design goals were ful�lled.

Re�ecting on the number of levels of opacity and their visual
distinction, we encountered a tradeo�. We aimed for the least signif-
icant level to remain legible to ensure no loss of information, while
also enabling clear di�erentiation among levels to allow readers
to select and consistently engage with the level they consider the
most suitable. However, the perceptibility of the di�erences among
levels becomes challenging in complex sentences with many levels.
Furthermore, according to Stevens’s power law, people perceive
changes in gray scale not linearly, but rather by a factor of approxi-
mately 0.5 [71]. For instance, a threefold increase in opacity might
only be perceived as 1.5 times more signi�cant, further complicat-
ing the di�erentiation of levels. This issue is re�ected in feedback:
some participants struggled to read the lightest gray text, while
others had some di�culty discerning the various levels and under-
standing how they elucidate the relationships between di�erent
parts of sentences.

Re�ecting on the user experience, an intriguing transformation
in reading patterns emerged from the feedback. Many participants
pointed out, in one way or another, a two-step reading process
that GP�TSM interface seems to promote. Initially, readers focused
on the darker, more salient text to grasp the primary narrative
or theme of the passage. This ’overview’ phrase of reading gave
them a framework or sca�old of the content. Subsequently, they
revisited the passage to delve into the grayed-out sections, �lling in
details where the questions were asked or their interest was piqued.
This sequence resonates with e�cient content absorption strategies
highlighted in speed reading literature, where readers �rst capture
the gist and then delve deeper [1, 63]. The interface, therefore, may
inadvertently facilitate this structured, layered reading approach,

which might explain the improvement in reading e�ciency and
comprehension.

6 LIMITATIONS AND FUTUREWORK
Re�ecting on our technical approach, opting for an LLM-based
backend enhanced the quality of the extractive summaries, but
sacri�ced speed and transparency. The black-box nature of LLMs
reduces the transparency of the decisions they make, and their
complexity slows down the system, potentially impacting future
deployment of GP�TSM to real-time reading scenarios. In particular,
our choice of GPT-4 might limit the potential applications of our
system due to data privacy concerns [49]; future work targeted
at sensitive data should consider other open-source models that
respect data privacy. In addition, the inherent non-determinism of
LLMs can lead to variations in outputs for similar inputs, adding an-
other layer of unpredictability in the LLM’s responses. Although we
partially mitigate this by requesting multiple responses and picking
the best one algorithmically, our heuristic-based approach is not
foolproof and may occasionally miss the most contextually relevant
or coherent response. Despite these drawbacks, we still stick to
an LLM-based approach because our primary focus at this stage
remains optimizing the accuracy and relevance of text saliency
modulation, which is currently best produced by LLM-based re-
cursive extractive summarization at the paragraph level. As LLMs
continue their current trend of advancement, we expect GP�TSM
to continue to improve in quality and speed, making it increas-
ingly feasible to use—as one participant explicitly requested—as a
Chrome extension.

Beyond the challenges posed by LLMs, our study also faces
several other limitations. First, the limited sample size and sam-
pling procedure could have skewed our conclusions due to a lack
of diversity in participant background. Future evaluations of GP�
TSM should actively include a wider array of participants, such
as younger or older age groups, users with varying educational
backgrounds, and individuals from di�erent cultural and linguistic
contexts. These groups may encounter distinct challenges or exhibit
di�erent interaction patterns with GP�TSM: age-related di�erences
in technology adoption and comprehension skills, cultural varia-
tions in text interpretation, and educational disparities in reading
abilities could all signi�cantly impact the e�ectiveness of GP�TSM.
Expanding our understanding of these diverse user experiences is
critical to a comprehensive understanding of the utility of GP�TSM
across a broader spectrum of users. Moreover, recent work [41]
has identi�ed needs of those with cognitive impairments, as well
as possible directions for text tools to support them, such as help-
ing readers prioritize what to read. The evidence collected so far
indicates that GP�TSM may ful�ll that need, but future evaluations
of GP�TSM should engage participants from that speci�c group to
determine if GP�TSM o�ers advantages for that community.

Second, our measure of reading comprehension relied upon long
passages from the GRE test, and how well GP�TSM generalizes to
other text styles and formats is yet unknown. This raises questions
about the adaptability of GP�TSM across various genres and com-
plexities of text, such as technical manuals, legal documents, or
everyday communication. Further, although our user study empir-
ically evaluates the usability and usefulness of GP�TSM, we rely
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solely on participants’ accounts of their interactions to understand
how they used GP�TSM, which could be subject to bias. Follow-
up work could use eye-tracking studies to provide insights into
how GP�TSM shapes users’ reading and skimming patterns. Finally,
while we adhere to the guidelines provided byWCAG (Web Content
Accessibility Guidelines) on contrast ratios of text, we acknowledge
that modulating font opacity can make text less legible, and thus
less accessible, especially to those with visual impairments.

Finally, we believe it is important to continue to explore the
design space of AI-resilient interfaces. Our understanding is that
GP�TSM is AI-resilient because, given that none of the original text
is removed or rearranged, the errors of omission, hallucination,
and misrepresentation instead show up as automated text attribute
choices the reader disagrees with, and these automated choices are
noticeable, presented with all the necessary context for the reader
to judge because: (1) Text attribute changes are always visible in
the interface (i.e., no automated choice results in something hidden
and therefore di�cult to notice). (2) The reader is still looking at
the original text so they have all the context they need to choose for
themselves whether they agree with each automated choice or not
(and what it implies about the text, e.g., whether that segment of
text is particularly important or not). Generalizing this notion of AI-
resiliency to additional tasks and domains is, we believe, important
and exciting future work.
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A POST-STUDY SURVEY

Question Statements

Please rank the 3 interfaces from most to least helpful for
answering the reading questions.

What did you like most about the interface you found the
most helpful? [open-ended]

Are there any features missing that you’d like to see in
the interface you found the most helpful? [open-ended]

I would like to use Reader-Blue to read online text of
interest to me in the future.

I would like to use Reader-Green to read online text of
interest to me in the future.

I would like to use Reader-Red to read online text of in-
terest to me in the future.

Table 4: Questions in the post-study survey. The last three
ask participants to rate their agreement with them on a 7-
point Likert scale from “Strongly Disagree” (a score of 1) to
“Strongly Agree” (a score of 7).

B SCATTER PLOTS OF USER STUDY RESULTS

Figure 8: A scatter plot of the preliminary user study results
showing average time and performance of the 3 study condi-
tions, with error bars representing standard error.

Figure 9: A scatter plot of themain user study results showing
average time and performance of the 3 study conditions, with
error bars representing standard error.

C GP�TSM VS. NGP�TSM IN COMPARISON

Figure 10: Side-by-side view of GP�TSM (above) and NGP�
TSM (below) shown to a participant in one of the comparison
interviews

D MORE EXAMPLES OF GP�TSM



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ziwei Gu, Ian Arawjo, Kenneth Li, Jonathan K. Kummerfeld, and Elena L. Glassman

Figure 11: GRE Passage 1 rendered using GP�TSM, as an additional example of how GP�TSM works.
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Figure 12: GRE Passage 2 rendered using GP�TSM, as an additional example of how GP�TSM works.
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Figure 13: GRE Passage 3 rendered using GP�TSM, as an additional example of how GP�TSM works.
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