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Figure 1: Our exploratory interface instantiates five combinations of text analysis (unique words, exact matches, and a novel
algorithm we call Positional Diction Clustering) and renderings (within a grid with highlights or interleaved with grayed out
redundancies), which can help users scale up the number of LLM responses they can reason about, e.g., for ideation, model
comparison, or response selection. These figures represent how four of the five different combinations render the top of a
page of a large collection of LLM responses generated from the test prompt “Write a short story for a five year old child about
a {creature} that loses something and then finds it again” for three values of {creature}: kitten, puppy, and bunny. The fifth
view tested—a grid layout without any visual additions based on text analysis—is not shown.

ABSTRACT
Large language models (LLMs) are capable of generating multiple
responses to a single prompt, yet little effort has been expended to
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help end-users or system designers make use of this capability. In
this paper, we explore how to present many LLM responses at once.
We design five features, which include both pre-existing and novel
methods for computing similarities and differences across textual
documents, as well as how to render their outputs. We report on a
controlled user study (n=24) and eight case studies evaluating these
features and how they support users in different tasks. We find that
the features support a wide variety of sensemaking tasks and even
make tasks tractable that our participants previously considered to
be too difficult to attempt. Finally, we present design guidelines to
inform future explorations of new LLM interfaces.
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1 INTRODUCTION
Large language models are capable of generating multiple different
responses to a single prompt.While several tools have recently been
developed for structuring the generation of prompts and collect-
ing responses [4, 42, 46], relatively little effort has been expended
to help either end-users or designers of LLM-backed systems to
reason about or make use of the variation seen in the multiple
responses generated. We see utility in helping users make sense
of multiple LLM responses. For instance, users may want to select
the best option from among many, compose their own response
through bricolage, consider many ideas during ideation, audit a
model by looking at the variety of possible responses, or compare
the functionality of different models or prompts.

However, representing LLM responses at a scale necessary to
see the distribution of possibilities also creates a condition where
relevant variation may be hidden in plain sight: within a wall of
similar text. One could turn to automatic analysis measures, but
we constrain ourselves to showing the entirety of the text itself, as
this does not constrict, either by top-down design or bottom-up
computation, which variations will be most useful to the user.

Based on our formative study interviews with a domain expert
end-user and multiple system designers, model characterizers, and
model auditors, we found that these users typically engage in itera-
tive inspection of 10s to 100s of LLM responses via a chat interface
(which is slow) or by pasting responses into a spreadsheet (which
is arduous and clunky).

This scale of 10s to 100s of LLM responses, where formative
study participants reported spending time sensemaking andmaking
decisions about model and prompt selection, is greater than the
inspection of one to two outputs at a time (as is common in a chat or
‘playground’ type environments) but less than the many thousands
of outputs typically involved in annotation studies. We therefore
call this mesoscale (“middle scale”) of LLM response sensemaking.

In order to support users’ sensemaking of LLM responses at
the mesoscale, we designed and implemented several existing and
novel text analysis algorithms and rendering techniques, each of
which captures one or more aspects of LLM responses’ possible
variation and consistency. Established theories of human cogni-
tion describe how exposure to variation and consistency within
prescribed structures can help people more robustly form mental

models of a phenomenon, e.g., how an LLM behaves. Specifically, in
line with Variation Theory [35], the features we instantiate identify
patterns of consistency (Figure 1d, “Exact Matches”), variation (Fig-
ure 1c, “Unique Words”), or both (Figures 1a, 1b, “Positional Diction
Clustering (PDC)”—a novel algorithm we introduce in this paper).
In line with Analogical Learning Theory [13], PDC highlights anal-
ogous text across LLM responses, i.e., positionally consistent and
similar in diction, such that users can see emergent relationships.

By evaluating these interface features, we shed light on the
answer to our research question:

RQ: How can text-rendering interface design better sup-
port sensemaking of LLM responses at the mesoscale?

To understand users’ sensemaking support needs and how well
these features did or did not serve them, we ran a controlled user
study and a series of eight open-ended case studies. In the controlled
user study, our system was compared to a baseline interface where
responses are presented linearly in groups based on the model
or prompt; we investigated tasks that varied both in the number
of responses that participants saw (from 9 to 50) and the kinds
of sensemaking involved (an email rewriting task and identifying
differences between models). In the case studies, participants were
asked to use our system to support their own real world LLM
uses. The case studies covered a range of tasks, including poetry
and fiction writing, identifying social bias, and investigating LLM-
generated legal advice, to name a few.

We report on a number of themes that emerged through these
studies. These include the kinds of subtasks users perform (e.g.,
detecting stylistic versus content variation), approaches to these
tasks (e.g., hypothesis confirmation), information processing styles
(e.g., preferring an overview versus pagination through subsets),
as well as user hesitancy to inspect too many responses at once
(which was often overcome when exposed to our features).

The contributions of this paper are:
• Formative studies that collect evidence of mesoscale text
analysis of LLM responses for a variety of use cases.

• A controlled user study and open-ended case studies that
demonstrate how our interface features can make sensemak-
ing of LLM responses easier, and that many LLM-related
tasks are intractable with current interfaces.

• A novel algorithm identifying similarities and variations
across LLM responses, called Positional Diction Clustering
(PDC), as well as a novel rendering for presenting the results
of PDC.

• Design implications for future work on LLM response in-
spectors.

In the discussion, we outline future design directions inspired
by our findings, consider limitations to our approach to manual
inspection, and reflect on the similarities and differences between
designing for LLM response inspection versus other kinds of textual
or machine learning data.

2 RELATEDWORK
The objective of this work is to explore both the tasks for which is
it helpful to view many LLM responses at once in a single scrollable
page, as well as the possible interface supports that could help users
complete their tasks. Here we review precedents and influences on

https://doi.org/10.1145/3613904.3642139


Supporting Sensemaking of Large Language Model Outputs at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

our work along three axes: skimming support, cross-document text
visualization, and sensemaking interfaces for generative AI.

2.1 Skimming and Skimming Support Tools
Reading and skimming are two distinct cognitive processes. Read-
ing involves a sequential and comprehensive engagement with the
text, whereas skimming is a strategic, selective, and non-sequential
form of reading focusing on extracting the most salient informa-
tion quickly [1]. Skimming requires focused attention and strategic
choices from the reader, which present additional cognitive chal-
lenges [11]. Despite its challenges, eye-tracking studies have found
that skimming is very common because of the time it saves [12, 40].
In this work, we use a combination of word-, phrase-, and sentence-
level highlights to call attention to text that may be relevant to
sensemaking [41] tasks.

So far, the focus of skimming research has predominantly been
on individual documents. However, our investigation diverges from
this norm by emphasizing comparison across documents. Tradi-
tional definitions might not classify such comparative reading as
“skimming,” yet we posit that skimming operates as a fundamental
cognitive process when readers contrast texts. In the next subsec-
tion, we consider work on comparing documents. By consciously
integrating skimming into the document comparison paradigm, we
bridge these two realms of study, aiming to unveil innovative and
more efficient interfaces for text comparison.

2.2 Cross-Document Text Visualization
While skimming and reading strategies for a single document are
well-established, generalizing to a collection of documents intro-
duces the challenge of visualizing similarities and differences across
documents [8]. Many systems have been proposed towards this
goal, but they either abstract away documents as a dot on a 2D
plane [27, 31], as word pairs within a word cloud [10, 52], or as
nodes within a graph [20, 21]. Direct access to the text itself, which
is a precondition for the user to consider differences across texts, is
often only possible as short document excerpts retrieved by a query
containing a selected phrase or linguistic pattern (e.g., choosing a
particular search term for text sliding [38]), hovering and clicking
over abstract document representations to open a full-text view, or
drilling down into deeper layers of the interface. In this work, we
render all the documents (i.e., LLM responses) in their entirety as
well as their relationships at a close textual level without requiring
an initial query, as users may not yet know what an appropriate
query would be, or even what they are looking for. This may be
possible for LLM response inspection without overwhelming users
in large part because of the generative processes that produce the
responses.

One approach to visualizing text across documents involves lever-
aging the structure and layout of textual documents to aid skim-
ming and comparison of text. For instance, VarifocalReader [28]
supports skimming large complex text documents by using a multi-
level layout where abstract summaries of varying detail are shown
alongside the source document itself. The role of layout is impor-
tant, especially in the early stages of interacting with a document,
because readers often scan a document before delving into its de-
tails [29, 32]; there is a human tendency to treat words as “locations

in space” [48].1 Furthermore, the visual structure of documents
can profoundly influence readers’ comprehension by affecting read-
ers’ assumptions, reading strategies, willingness to read, cognitive
costs, and effort they must make to read [26, 37, 39, 49]. In our
work, we take advantage of the spatial aspects of document com-
prehension by decorating segments of text with highlights to show
pre-computed cross-document relationships. We hypothesize that
this will engage both visual and spatial memory as well as pattern
recognition.

Text alignment is often used to facilitate direct comparison of the
text across multiple documents, which can involve designing an al-
gorithm for identifying shared patterns across texts and a method of
visualising those shared patterns [53]. For example, Tempura [50]
uses “structural templates”—structures of linguistic features—to
find and summarize patterns in a corpus of queries collected by
search engines and intelligent assistants. (Note that these queries
tend to be shorter and more structured than ordinary text.) Other
work on text alignment has treated it as a sequence alignment
problem and focused on algorithms involving edit distances and
document-to-document matrices [9, 36]. CollateX [19] introduced
variant graphs to enable the comparison and alignment of more
than two documents and integrated the process into the digital col-
lation workflow. However, the proposed alignment algorithms are
still limited to single sentences with highly similar sentence struc-
tures [19]. Gero et al.’s preliminary work presented a sensemaking
interface that uses concordance tables to display LLM responses
to support users in investigating problematic responses and distri-
bution shifts across responses [15], but this preliminary work was
not evaluated and was designed for single sentences rather than
entire multi-sentence LLM responses.

Related work can also be found in the space of rendering code
corpora, in particular OverCode [16] and Examplore [17], which
pre-compute and render sub- and cross-document relationships
using visual text attributes and spatial layout. Both OverCode and
Examplore render entire corpora of text (code) with the same or
similar purposes: a corpus of Python solutions to the same pro-
gramming problem and a corpus of Java code examples that all call
the same API, respectively. However, code and natural language
text present distinct challenges in terms of cross-document com-
parison. And while our features also precompute similarities and
differences, there is no abstraction away from the source documents
(as in both OverCode and Examplore) nor a pre-defined template
for identifying analogous components (as in Examplore).

LLM responses are a timely, important, and distinct type of cor-
pus, and our features’ designs have been inspired by—and, as in
the case of PDC, are necessarily unique from—prior systems’ fea-
tures, as these features did not transfer from other domains without
significant insight.

2.3 Sensemaking Interfaces for Generative AI
Generative AI models span multiple modalities, and interfaces for
helping users understand and leverage their stochastic capabilities
are in their infancy. Many systems in adjacent fields that aim to
facilitate comparison among types of data other than text have

1This is why people often remember where on the page a given piece of information
was located, even if they cannot remember the information itself.
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adopted a grid view where information is organized along columns
and rows. For instance, Mesh [7] helps consumers evaluate evi-
dence about a product gathered across many different sources on a
grid view, where columns are options to choose from and rows are
criteria. Similarly, MLCube Explorer [25], an interactive visualiza-
tion tool for comparing machine learning results, uses a grid view
where each row represents a subset of the data and the columns
are summary statistics for each subset. In our work, the grid lay-
out is specifically inspired from text-to-image generation “style
guidelines” where AI-generated images are laid out in a grid that
reflects controlled variations in the prompt [34]. For our design,
the variation rendered in the grid is the result of multiple draws
from the stochastic LLM, and, where indicated, different LLMs or
variations on a prompt.

The public availability, broad applicability, and performance
of LLMs specifically has increased their adoption for a diverse
range of applications that vary in domain and complexity. Prior
work has shown that LLMs often generate long responses that
negatively impact the user’s ability to understand and interact
with the given output [23]. To mitigate this, there are interfaces to
assist users with sensemaking and evaluating responses generated
from LLMs. For instance, Graphalogue [23] and Sensescape [44]
transform long LLMs responses into diagrams that connect the
concepts in the response using a graph. These systems enhance
the rendering of individual LLM responses, rather than rendering
the distribution over possible LLM responses to the same query,
and are therefore do not explicitly address the stochastic nature
of LLMs. Meanwhile, Promptfoo [42] was developed for prompt
engineering and evaluating prompts against predefined test cases;
users can view prompts and inputs in a side-by-side display but
the focus is on supporting automatic evaluation. In this work, we
assume that users either do not have automatic quality measures
for their task or that they do not yet know how to precisely define
their goal. We seek to encourage inspection of outputs and do not
abstract away from the text itself, as other prior very preliminary
work has done [15].

3 FORMATIVE INTERVIEWS
We interviewed eight people working with or developing systems
with LLMs. In semi-structured interviews, we asked interviewees
about their process, how they selected pre-trained and/or fine-
tuned models, and how any prompt engineering was structured.
The interview guide can be found in Appendix A.

3.1 Participants
Participants were recruited through the authors’ professional net-
works. Our interviewees included two doctors investigating LLMs
in medical contexts, one researcher investigating the creative abili-
ties of LLMs, three start-up founders or CTOs (from three different
companies) who oversee the development of LLM-based public-
facing products that support writing, and two artist-researchers
who build and interrogate LLM attitudes towards queer identities.

3.2 Findings
Overall, we found that everyone we interviewed engaged in man-
ual inspection of outputs. This happened at different scales: from

comparing two or three outputs to reading a list of 1000 outputs.
(As described in the introduction, we refer to the middle of this
range as the mesoscale for text analysis.) Sometimes it involved
clearly-defined annotation, but often it involved discussions among
the system designers or with users. All interviewees had developed
ad-hoc processes to support this inspection. Many noted that they
put outputs in a spreadsheet, as this facilitated both sharing of
outputs as well as increasing their readability. In addition, three
main themes emerged:

3.2.1 Failure of Automatic Evaluation. All interviewees said that
automatic evaluations were not useful when it came to developing
LLM applications. Several interviewees had explicitly investigated
if benchmark evaluations of LLMs correlated with which model
worked best for their use case and found no correlation. Because
automatic evaluations could not predict success at their task, all
interviewees engaged in some kind of manual inspection for evalu-
ation.

3.2.2 Sensemaking of LLM Responses. Interviewees discussed a
sensemaking process with LLM responses. The artist-researchers
discussed reading and comparing outputs as a key part of their
development process, to understand if a model they were training
was “getting better” or to compare how models treated heterosex-
ual vs. homosexual couples. The researcher working on creative
writing applications discussed both the prompt engineering he did
to develop the system as well as the prompt engineering he saw his
users engage in, e.g., comparing model capabilities for prompts in
first v. third person. One of the start-up co-founders mentioned a
variety of kinds of manual inspection that involved sensemaking,
from panel discussions with users to internal evaluations where
“we rely on our own literary skills to evaluate the outputs.” Another
start-up founder described their process as putting a few people in
a conference room with a lot of outputs and having them read them
all. In particular, he noted the importance of detecting problematic
outlier outputs, because preventing these was key to developing
and maintaining user trust. These observations show the impor-
tance of sensemaking to the use of LLMs and the range of forms
sensemaking takes.

3.2.3 Complex or Nuanced Annotation. The third start-up founder
described their process as printing out a thousand outputs and
reading them all manually, noting which ones “worked” for their
intended use case and which did not, and using this ad-hoc, manual
annotation to select an appropriate fine-tuned model. Both doctors
we interviewed were engaged in research projects evaluating LLMs
in a clinical setting. One doctor described the detailed and highly-
skilled human annotation involved in evaluating LLMs, and noted
that the same grading metrics used for evaluating doctors were
being used to evaluate LLM responses.

4 FEATURE DESIGN: EXISTING AND NOVEL
SENSEMAKING SUPPORT FEATURES

We designed and prototyped instantiations of several existing and
novel algorithms and renderings for scaling up LLM response sense-
making. Each highlights or juxtaposes words, phrases, or entire
sentences based on their relationship to the entire collection of
LLM responses. We view these features as technology probes [22]: a
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non-exhaustive set of points in a design space for LLM response-
rendering interfaces that scale up human inspection.

4.1 Design Goals
4.1.1 Scale up the number of LLM outputs a human can consume.
We aim to make 10s to 100s of LLM responses cognitively comfort-
able to peruse, as this was the scale we found to be most relavent
in our formative study. This range is relevant for a variety of tasks.
When writing an email, a writer may have an easier time recogniz-
ing tone and diction variation across 10 different LLM responses.
When looking for inspiration, a designer may look at 50 responses
to surface diverse possibilities.When checking for outlier responses,
a system developer may want to look at 100s of responses.

4.1.2 Show the entire collection of LLM outputs as text—not abstrac-
tions. In our formative study, we found that automated analysis
rarely captured what the participants were looking for when in-
specting LLM responses. The choice to have minimal textual ab-
stractions in prior publications like OverCode [16] served users
well: users could recognize what they thought were good and bad
aspects of programming composition in student solutions which
were worthy of comment. Similarly, we think users in our context
should be able to see all of the responses and perform their own
sensemaking.

4.1.3 Do not require users to select text “lenses” with which to see
the data. Some text analysis tools require users to select (or accept
recommended) search terms in order to access the most powerful
text analysis algorithms and renderings [38]. However, in our for-
mative study, participants seemed to prefer engaging with the text
directly without having to articulate a lens with which to look at
the corpus, since their analysis goal may be initially under-defined.
For this reason, we want to instantiate flexible features that allow
users to immediately inspect the entirety of LLM responses without
requiring the user to choose or accept a particular lens (e.g., search
term) with which to render them.

4.1.4 Show pre-computed relationships within the rendering of the
text itself. Like prior work on rendering sub- and cross-document
relationships within a textual corpus [16, 17], we want to decorate
text to show pre-computed relationships, such as string matches
or analogous sentences, across responses. In this way, we help
users shift cognitive bandwidth away from identifying overlapping
or “unique” language to answering more complicated questions.
Additionally, we create skimmable visual patterns across all of the
responses.

4.1.5 Support a variety of sensemaking sub-tasks for both system
designers and system end-users. We want to support a wide range of
tasks that involve sensemaking. For example, we want to support
the detection of similarities and differences between individual
responses as well as groups of responses, and support the detection
of “outlier” responses (or parts of responses). In alignment with
sensemaking literature [41], the goals of user tasks could be very
open-ended or be hypothesis driven depending on the task itself
and how “far along” a user is in the sensemaking process.

4.2 Relevant Theory
By interactingwith a system, usersmay develop amental model that
guides their future interactions with it [43]. Variation Theory [35]
and Analogical Learning Theory [13, 14] each propose mechanisms
for how people may conceive and update their mental models based
on concrete examples, or use their mental model in new situations.
Extensive evidence congruent with each theory has been collected
inmany domains [2], though not yet for mentally modeling LLMs or
mentally modeling the space of possibilities, e.g., in an ideation task,
generated by an LLM. One prior piece of HCI work, ParaLib [51],
does explicitly exploit these theories for system feature design, but
does this in the domain of code.

Variation Theory describes how helping people perceive the
different dimensions of consistency and variation across examples
(here, LLM responses) of the object of learning helps them more
quickly and robustly leap to more accurate mental models. Analog-
ical Learning Theory describes how people can form mental mod-
els or schema from perceiving structural analogical relationships
across superficially varying examples (again, here LLM responses).
In this work, in line with Variation Theory, the existing and novel
features instantiated and described in the next subsection collec-
tively identify patterns of consistency, variation, or both; they are
explicitly designed to make emergent dimensions of consistency
and variation easier for the user to perceive.

4.3 Feature Descriptions
We implemented our LLM response sensemaking features within a
fork of the open source project ChainForge [5], which is a visual
authoring interface for generating, inspecting, and analyzing LLM
responses.2 The features are a combination of text analysis algo-
rithms and rendering. The initial two algorithms and first layout
are conceptually straight-forward extensions of existing features,
while the final novel algorithm and its corresponding custom layout
are designed specifically for analyzing and rendering collections of
LLM responses that are, by construction (e.g., multiple draws from
the same model), variations on a theme.

4.3.1 Exact Matches. This conceptually straight-forward feature
enables users to see how similar responses are by finding and iden-
tifying “exact matches” across responses. There are many ways to
implement this functionality. We detect and highlight the longest
common substrings, as that appeared to be most robust to a wide
variety of response types during informal evaluations. The hy-
pothesized benefit of this feature is that users can shift cognitive
bandwidth from recognizing overlapping language to answering
more complicated questions. Additionally, it gives a skimmable
sense of literal repeating patterns across all of the responses.

Algorithm and Rendering. We identify substrings to highlight
in five steps: (1) find common substrings in pairs of responses,
(2) split substrings that span sentence boundaries, (3) filter short
substrings, (4) rank them based on a combination of substring length
and how many responses they appear in, and (5) retain the top
𝑘 = min(12, |responses|/2). For details see Appendix subsection B.1.

2ChainForge, and the text rendering functionality we built atop it, is written in Type-
script. Our code imports the ChainForge-retreived LLM responses as a list of JSON
objects and renders them.
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Each set of exact matches is highlighted in its own color; examples
are shown in Figure 1(d) and Figure 2.

4.3.2 Unique Words. This feature allows users to see what is dis-
tinctive about responses by highlighting “unique” words in each
response. There are many ways to measure uniqueness; we use a
simple measure that has been widely studied in Natural Language
Processing and Information Retrieval: term frequency-inverse docu-
ment frequency (TF-IDF) [24]. TF-IDF uses the frequency of a word
in a given document as well as its frequency across all documents to
calculate a score for how “representative” a word is of a document
relative to the rest of the collection.

Algorithm and Rendering. We calculate TF-IDF values using the
Wink-NLP Javascript library [47]. The set of documents is defined as
the set of responses generated by the selected LLM(s). For instance,
if the system was run with two models, three prompt variations,
and three responses for each combination, there are 2 ∗ 3 ∗ 3 = 18
responses, which comprise the set. Term frequency is calculated
for each response. We remove stop words. We highlight the five
top-scoring unique words in each response. See Figure 1(c) and
Figure 3 for examples.

4.3.3 Positional Diction Clustering (PDC). This novel algorithm is
designed to identify, when present, any emergent structure (and
variation within that structure) in a set of LLM responses by find-
ing sets of sentences across different responses that are similar in
textual content, i.e., diction, and their location within their respective
responses. One could refer to these sentences as analogous sentences
across responses. Sentences in any single response which do not
have analogous sentences in any other responses are preserved as
singletons.

Theories of human concept learning suggest that a key step in
forming accurate, robust mental models of a phenomenon is to
be able to discern the underlying dimensions of variation (Varia-
tion Theory) and any latent structures beneath superficial details
(Analogical Learning Theory). By detecting and communicating
which sentences are both structurally analogous (by virtue of their
position within the response) and semantically related (by virtue
of highly overlapping content), users should be able to more eas-
ily identify emergent structures, as well as compare and contrast
particular compositions of structural elements across responses
and syntactic elements that may vary in meaningful ways across
analogous sentences within those responses. These theories assert
that these subtasks are key ingredients in forming those robust
accurate mental models, i.e., learning from the LLM responses in
order to better perform their overarching task.

Algorithm and Rendering. We create groups of sentences using
single-link agglomerative clustering. For every pair of sentences,
we calculate their content similarity as exact diction overlap normal-
ized by their combined length.3 Initially, every sentence is placed
in its own group. Then, we iterate through all sentence pairs, in
decreasing order of content similarity. For each pair, we merge the
groups that contain those sentences if (1) the two sentences are
sufficiently similar in content and normalized location in the LLM

3This is a slight variant of Bray–Curtis Similarity. For details see the Appendix subsec-
tion B.2.

responses4 and (2) merging creates a group where at least 70% of
sentences are all from different responses, since we are interested
in analogous cross-document sentences. Finally, for each group, we
calculate the mean normalized location in the LLM response of
sentences in the group. Groups of one are permitted; these capture
sentences that have no analogous sentence (in terms of both content
and approximate normalized location) in any other response. The
algorithm returns (a) all the groups, including groups of one, and
(b) the mean position for each group. This algorithms’ results can
be rendered in one of two ways: using the same color to highlight
all the sentences that share a group, as is done in the Grid Layout
(shown both in Figure 1(a) and Figure 4), and listing sentences, by
group, in order of their groups’ normalized mean location within
the responses, as is done in the Interleaved Layout (subsubsec-
tion 4.3.5), which is specifically designed as an alternative layout
for the results of PDC (shown in Figure 5).

4.3.4 Grid Layout. LLM responses are laid out in a grid, with user-
defined variables for the columns and rows. For instance, users can
select that the different models queried determine the columns, and
repeated generations from the same prompt determine the rows.
This view allows users to see many responses with controlled vari-
ations (model, prompt, temperature, etc.) side by side. For example,
in Figure 1, the template prompt asks the model to generate a short
story. Here, prompt variations—different possible story characters—
define the rows, and the 𝑛 = 3 different responses per prompt
define the columns. There may be more than two variables a user is
interested in, for instance also comparing models. In the top right
of the interface, the user must select which value of the remaining
variables to surface. Currently, the grid does not support viewing
more than two variables (i.e., the column and row variables) at a
time, though extensions could allow this.

There are two hypothesized benefits of this view. One is based on
an understanding of human perception: the grid layout should help
users compare more LLM responses because the spatial arrange-
ment assists their memory. The other benefit is based on Variation
Theory, which posits that discerning the impact of a critical aspect,
for example model temperature, is only possible when experiencing
variation along that dimension, isolated from variation along other
dimensions. The user-configurable grid layout makes it possible for
users to isolate dimensions of variation, enabling them to discern
their qualities and critical values, for instance how model version
affects the language of its responses to the same prompt.

4.3.5 Interleaved Layout (enabled by PDC). Sentences from dif-
ferent responses are strategically interleaved. The rendering (Fig-
ure 1(b) and Figure 5) is generated by printing out the groups
produced by the algorithm. Groups are ordered based on the aver-
age position calculated by the algorithm. This means they roughly
follow the flow of most responses. Each group is rendered with one
sentence per line, in an order that maximizes exact word overlap
between adjacent sentences in the group. If a sentence has any exact
word overlap with the sentence above, i.e., if the 𝑖𝑡ℎ word in both
sentences is the same, the word in the sentence below is grayed
out. A small amount of whitespace separates each group. A colored

4See the Appendix subsection B.2 for the calculation, threshold values, etc., used in
user study.
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Figure 2: Example of the ‘exact matches’ feature for the prompt “Who invented the {object}?" where the objects are pencil
and telescope and each prompt had 𝑛 = 3 generations. Exact matches makes it easy to identify portions of responses that are
matching across multiple responses.

Figure 3: Example of the ‘unique words’ feature for the prompt “Write a short paragraph about the sea in the style of {style}."
where the styles are a horror novel and a romance novel and each prompt had 𝑛 = 3 generations. Unique words makes it easy
to see how word choice is influenced by the style.

Figure 4: Example of the PDC feature in the grid layout for the prompt “Explain how a lightbulb works to a 12 year old." for GPT4
temperature=1 and GPT4 temperature=1.3. In the grid view, sentences with similar relative position and diction are highlighted
in the same color; notice that the sentences highlighted in yellow are both about how gas supports filament longevity.
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Figure 5: Example of the PDC feature in the interleaved layout for the same prompt, model, and temperature settings as in
Figure 4, i.e., “Explain how a lightbulb works to a 12 year old." for GPT4 temperature=1 and GPT4 temperature=1.3. In the
interleaved view, sentences with similar relative position and diction are grouped, with the color patch to the left indicating
which model version produced them; notice that all the opening ‘topic’ sentences are shown together with redundant text
grayed out.

square to the left of each sentence indicates which prompting con-
dition generated it. Note that, due to the prototype implementation
not ignoring punctuation (e.g., differentiating between Once and
Once,) fewer words were grayed out than a user might expect, e.g.,
the adjacent Once’s with and without commas in Figure 1(b). We
do not believe this significantly affected the study results.

We hypothesise that this rendering will (1) be particularly use-
ful for users who wish to remix parts of several different LLM
responses, (2) support the identification of rare response compo-
nents, as they will be easily identified as singleton groups, and (3)
support characterizing the complete distribution of LLM responses,
since the volume of screen real estate taken up by any given group
is proportional to the number of responses that include a sentence
in that group.

5 USER STUDY
We instantiate these features into a single interface, which we call
the “exploratory interface”. We also implement a baseline interface
that represents a status quo in LLM response rendering: a linear list
of responses, as one might get from an API call or pasting responses
into a spreadsheet, as some formative interviewees did. The baseline
interface has two additional capabilities: listing responses grouped
by model or prompt, and putting each group in a collapsible con-
tainer, such that users can have as many groups open at a time
as they like. Within each group, responses are presented linearly
top-to-bottom. See Appendix subsection C.3 for a screenshot.

We ran a controlled user study that investigated when and how
the different features were helpful relative to the baseline interface.
This allowed us to investigate:

Which features best support sensemaking tasks over
many LLM responses?

The user study put participants in two different scenarios (writ-
ing an email, comparing two models) at two different scales (10
and 50 LLM responses, respectively). This study evaluates these
features’ utility for end-users who attempt these tasks.5

5.1 Participants
Participants were recruited from a local university via mailing lists
and flyers. Participants had to be over 18 years old, fluent in English,
and a student of some kind (undergraduate, masters, or PhD).6 We
recruited 24 participants (11 women, 12 men, and 1 non-binary).
Eight participants were 18-24 years old, and the remaining 16 were
25-34. All were graduate students of some kind (15 Ph.D. students,
9 Master’s students). In the pre-study survey, we asked participants
about their confidence in writing important email and their ex-
perience with LLMs. Response details can be found in Appendix
subsection C.4. Most participants felt very confident writing impor-
tant email and had some experience with LLMs. Few participants
had explored the differences between LLMs before.

5.2 Study Procedure
All studies took place in person. Participants completed the tasks
using the facilitator’s laptop. Facilitators were authors of the paper.

5In the case studies we investigate how more targeted user groups (like researchers
and system designers) use the features in self-selected and self-directed tasks.
6Although narrowing our participants to students is not necessary to answer our
research questions, by narrowing the pool to students we were able to pick tasks that
were more likely to be personally compelling and realistic.
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The general flow of the study procedure is rendered visually in
Figure 6, and is described in more detail in Appendix subsection C.1.
The exact prompts can be found in the Appendix subsection C.5.

5.3 Task 1: Email (Re)writing
We chose an email (re)writing task as prior literature has used this
task with LLMs [6, 18] and we found this is a common use case
of LLMs [30, 33]. Additionally, we hypothesized that users may
benefit from seeing multiple variations at once, rather than one at
a time (as would be the case in a chat interface) as users may better
be able to compare and contrast responses to select the best one,
and may be more able to recombine elements of different versions
into their final draft.

Participants were shown nine different LLM responses that each
rewrote the same initial email draft. The prompts used in the study
were chosen to be realistic for the recruited participants (university
students): asking a professor for a recommendation (Task 1A) and
asking an internship manager for a later start date (Task 1B). Partic-
ipants were asked to first select the LLM response that was closest
to the one that they would send in real life. We gave participants
up to 3 minutes to complete this part of the task, given that pilot
participants typically did not take more than 2.5 minutes. Then,
participants were asked to edit their chosen LLM response to make
it closer to what they would want to send. We mentioned that par-
ticipants could also remix parts from different LLM responses. We
gave participants 2 minutes for this part of the task, as most partici-
pants could complete it within this time and the outlier participants
would be prevented from editing for too long.

5.4 Task 2: Model Comparison
In this task, participants were asked to compare models; they looked
at 25 responses from GPT-3.5 and 25 from GPT-4. We selected this
task to be one that users may want to engage in (compare model
behaviour) and hypothesized that it may be quite difficult with
status quo tools. There were two prompts, one for Task 2A and one
for Task 2B: asking for advice about how to skim a book and asking
for advice on how to prepare in the week before an important final
exam. The participants’ task was to list as many differences as
they could between the two models’ responses. This task is quite
open-ended. In pilot studies, participants needed at least 5 minutes
to come up with even a few model differences. However, some
participants found the task exhausting and would ask to give up
around 8 minutes. For this reason, we gave participants 10 minutes
for this task, and allowed them to stop early if they felt they had
completed the task to the best of their ability.

5.5 Analysis
5.5.1 Quantitative Analysis. We ran statistical tests to compare
responses to all the Likert scale survey questions as well as time on
task. In the model comparison task, to determine how many differ-
ences were found by each participant, we first put all participants’
listed differences into one list and had one author, who was blind
to participant and condition, clean the data manually.7 Then we

7This was because some participants would write paragraphs instead of bullet points,
or include two differences in a single bullet point.

use counts of how many differences each participant wrote down
in each condition.

5.5.2 Qualitative Analysis. Two authors followed a general induc-
tive approach for analyzing qualitative data [45]. Both listened to
all interviews to gain context, and, via transcriptions, pulled quotes
relevant to the research questions. With a shared set of quotes, the
researchers independently came up with codes for the quotes, then
came together to discuss and create a codebook. This codebook was
shared with other members of the research team, discussed and re-
vised. With the revised codebook, the two authors re-coded half of
the data, and disagreements were discussed and codes were revised
based on discussion. Finally, the remaining data was re-coded by a
single author.

Table 1 shows the results of our analysis of the interviews with
participants. These themes reflect a wide range of participant re-
sponses, from subtasks performed (e.g., detecting diversity of re-
sponses) to methods for performing these subtasks (e.g., confirming
hypotheses) to the cognitive elements involved in performing them
(e.g., focus and working memory). We use these themes when ana-
lyzing how participants did or did not make use of the features in
each of the tasks in the user study, as seen in the subsequent two
subsections, but also present them as a result of the study that can
inform future system designers and user studies, as they reflect a
range of methods, issues and concerns that come up when users
inspect LLM responses.

5.6 Email (Re)writing Results
5.6.1 Few Quantitative Differences Between the Exploratory and
Baseline Interface. Participants completed Task 1B faster than Task
1A, and felt less rushed. For this reason, we split out analysis com-
paring interface conditions between Tasks 1A and 1B; further details
can be found in Appendix subsection C.10. Participants in both in-
terface conditions and scenarios were quite successful at the task,
with all participants rating their final edited email as above a 5 on a
7-point scale where 7 was “I would definitely send this email.” There
were no significant differences between the interface conditions for
either Task 1A or 1B for how successful they were at the task (how
likely they were to send the email) nor how long they took. This
suggests that the exploratory features did not obviously impact
participants’ ability to do the task, perhaps because the task was
easy enough to achieve near perfection in both interfaces. When
asked which of the two interfaces was easier and which was more
overwhelming, there was no clear preference; participants varied
in which interface they preferred.

5.6.2 Qualitative Differences Between the Exploratory and Baseline
Interface. Despite in aggregate there being few differences between
the interfaces, there did exist preferences that varied across partici-
pants.

In the exploratory interface, both the layout and multiple dif-
ferent highlighting features were explicitly called out as helpful,
relative to the baseline interface. Some participants appreciated be-
ing able to see all responses at once: “I think that’s what’s nice about
the grid; [the emails] are all right there. And so your eyes can sort of
flutter and dart around as you’re reading each one” (P9). Some par-
ticipants appreciated how the highlighting features allowed them
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Figure 6: Study Process: each participant performs two email rewriting tasks with different UIs and two model comparison
tasks with different UIs. Interface conditions are counterbalanced.

Table 1: Codebook.

Code Definition

Kinds of Similarities and Differences Noticed
style Stylistic or tone similarities and differences.
content Content similarities and differences, including counting phrases and the length of responses.
granularity Level of abstraction of similarities and differences, e.g., high level v. low level or “granularity”.
structure Structural similarities and differences between responses, including ideas of responses being ‘segmented’.
outliers Identifying outliers or unique features.
diversity Determining consistency or diversity across sets of responses.

Preferences about Interface Elements
display Preferences about viewing all or many responses at once.
scroll Preferences about needing to scroll to return to responses.
options Preferences about the ability to disable features.
delineation Preferences about delineation between prompt groups (e.g., responses to different prompt variations).
visual learner Preferences about learning or processing information visually.

Elements of Reading Process
speed What made reading responses faster or slower.
read all Reading the entirety of groups of responses (as opposed to skimming).
skim Skimming groups of responses.

Cognitive Elements
memory Issues of working memory, forgetting response content or location, or needing to reread to recall responses.
ease Cognitive demand of different interface elements.
overwhelm Feelings of overwhelm or stress, especially in response to inspecting too much information at once.
exhaustion Feelings of exhaustion or “zoning out”.
focus Ability (or inability) to focus on specific responses or groups of responses.
difficulty Feelings of task difficulty, including not knowing how to start a task.

Methods of Detecting Similarities and Differences
confirmation Performing “hypothesis testing” or otherwise confirming or verifying an idea.
comparison Directly comparing responses by having them nearby or side by side.
absent color Making use of unhighlighted text segments.

Feature Accuracy and Understanding
accuracy Determining how accurate or trustworthy different features are.
not understanding Not understanding how a feature worked or why it performed a certain way.

to easily compare segments of responses (using PDC in the Grid
Layout) and identify stylistic choices that matched their own style

(using the Unique Words feature). These participants also noted
that, in the baseline interface, needing to scroll to revisit responses
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was challenging because “if you want to reference the first email that
you read versus the ninth, you have to scroll up and then you lose the
view of the ninth one" (P9).

In contrast, other participants said that the exploratory inter-
face felt overwhelming because seeing all nine at a time “was too
much information. . . . The [baseline linear view] was more organized”
(P1). In particular, the baseline interface allowed users to collapse
groups of responses, allowing participants to focus on one group
of responses at a time. Participant responses to the two interface
conditions seemed to be influenced by their information processing
style, something we saw come up in the case studies as well, and
we discuss in further detail in the Discussion section.

5.6.3 Utility of Different Features. Most participants spent little
time with any of the features, although some participants spent sig-
nificant time in Grid PDC and UniqueWords; details can be found in
Appendix subsection C.10. The four participants who spent the ma-
jority of their time in the Grid PDC feature noted that because the
email messages had a common structure, the highlighted sentences
allowed for easy visual segmentation of the responses—this allowed
participants to easily compare across the individual segments. One
participant said that the Interleaved PDC feature matched the way
he currently used LLMs for writing tasks, except he normally had
to do it by manually copy and pasting sentences from multiple re-
sponses grouped by their semantic function, such that he could pick
the best sentence per group. Two participants spent the majority of
their time in Unique Words feature. One of these, P7, said that this
feature made it “easier for me to just look and see what makes each
response unique.” Overall, participants found the Grid PDC most
useful, but it also appears that this task may have been too easy to
require much detailed exploration of the responses, as participants
could read the entirely of all nine in just a few minutes. The next
task proved more difficult, and therefore highlighted the utility of
the features when users are more likely to struggle with existing
interfaces.

5.7 Results for Model Comparison Task
5.7.1 Quantitative Differences Between Interface Conditions. When
comparing the interface conditions, we found no difference between
the cognitive load questions. However, we did find that participants
reported being more successful in finding differences with the ex-
ploratory interface than with the baseline interface (p < .05, Mann
Whitney U task for nonparametric data). When participants were
asked to rate which interface made the task easier and which was
more overwhelming, participants reported a strong preference for
the exploratory interface, as can be seen in Figure 7.

Participants reported feelingmore successful with the exploratory
interface, and reported that the exploratory interface made the task
easier, but did they actually come up with more differences? Since
we may reasonably expect that participants may get better at this
task the second time around, we ran an ANOVA analysis of how
task order and interface condition impact the number of differences
found. Our dependent variable is the number of differences found,
our fixed effects are task order and interface condition, and our
random variable is participant ID. We find that the task order is

(a) “Which interface made the task easier?”

(b) “Which interface was more overwhelming?”

Figure 7: Participant interface preferences for the model
comparison task.

not significant but the interface condition is (p < 0.01), demonstrat-
ing that the exploratory features did help participants find more
differences.

We found that participants spent significantly less time with the
baseline interface than the exploratory one (baseline: 8.8 minutes;
exploratory: 9.7 minutes; p < .05; two-tailed t-test for data with sim-
ilar variance). Since participants also found more differences with
the exploratory interface, it’s reasonable to assume that there may
be a correlation between time on task and number of differences
found. We calculate the Pearson correlation coefficient and p-value
for testing non-correlation, one-tailed where we test for positive
correlation, and find that time on task and number of differences is
significantly positively correlated (p < 0.05). This indicates that the
exploratory interface may have allowed participants to perform the
task better through increasing engagement, allowing participants
to stay on task longer.

5.7.2 Qualitative Differences Between Interface Conditions. In the
baseline interface, because participants had to scroll up and down to
get to responses from the two models, many participants reported
forgetting what they had determined about a single model. P2
suggested this was “because we have a limitedmemory window,” such
that skimming through the linear view resulted in forgetting what
they were even trying to discern. P13 described the exploratory
interface as: “We can literally see the difference, what this group says
versus what that group says. So it gives a side by side comparison."

All participants reported that the exploratory interface made the
task easier because it allowed for easier recognition of similarities
and differences between the two sets of responses. Participants
used the features in the exploratory interface in a variety of ways,
some of which we had imagined and some of which we did not;
details can be found in the next section. While this may be an
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expected result, we did not see this result in the email rewriting
task, suggesting that the utility of LLM inspector interfaces may
be dependent on the number of responses users need to inspect
(in these studies, 50 LLM responses versus 9, the former of which
is more firmly at the mesoscale text analysis) or something about
the task itself. In the next section we dig into the variable utility of
different features to support this task.

5.7.3 Utility of Different Features. Figure 8 shows the time partici-
pants spent with each feature, as well as how many participants
indicated a given feature was useful. Grid PDC was the most used
and most highly preferred feature. Participants found that Grid
PDC help them read responses faster: “If I saw a similar sentence
highlighted then I didn’t read the sentence completely, I knew that I
already heard them before” (P1). Additionally, this feature helped
people identify response segments; P5 said that "in the [baseline],
I had to actually segment everything in my head after reading it.
And in the [exploratory], I didn’t have to spend much time reading ...
because the segmentation was already being performed." While we
expected participants would use Grid PDC to notice similarities
based on what was highlighted, we didn’t expect participants to
also consider what wasn’t highlighted, as P7 did, who said "if it’s
not color coded at all then it’s probably a unique thing."

Interleaved PDC was the second most preferred feature, along
with Exact Matches. Interleaved PDC was mainly helpful in de-
tecting content differences between the two models. P1 described
that “there were certain clusters which were only present in one of the
models.” Similarly, participants noted that singleton groups indi-
cated that only one model came up with that suggestion. P15 also
used Interleaved PDC to detect structural differences between the
two models: “It would help me to find out that there’s some major
difference in the distribution, like GPT3.5 had occupied a bunch of
them at the top. ... I found out that it actually shows more introductory
sentences.”

All participants used Exact Matches in very similar ways: to
determine how consistent or diverse a model was. Still, this was
very useful, and participants spent a decent amount of time in
this feature. Unique Words was the least preferred feature, though
participants did spend time with it. No participants mentioned in
the interview a preference for Unique Words or how they used it.

6 CASE STUDIES
The controlled user study investigated how participants used the
features in two different tasks. However, participants had no con-
trol over the prompts, models, or what they were attempting to
do. This section reports on eight case studies, where we recruited
participants via our professional networks who were interested in
understanding and examining LLM responses in the context of their
own work. Participants were asked to bring their own tasks, and
attempt those tasks using the exploratory interface. Table 2 shows
for each case study the domain of the task, a short description of
the task(s) performed, as well as the maximum number of responses
viewed at any one time and the approximate number of words per
response. We attempted to recruit a wide range of case studies, in
terms of the kinds of tasks but also the anticipated number and
length of responses inspected.

(a) How many participants marked a given feature as useful in the
post-task survey. Here ‘Grid Layout’ refers to the general laying out
of responses in a user-defined grid.

(b) Time spent in each feature across all participants, ordered by how
many participants marked a given feature as useful in the post-task
survey, i.e., counts from Figure 8a.

Figure 8: Figure (a) shows the ‘popularity’ of features based
on how many participants marked that feature as useful
in the post-task survey. Figure (b) shows how much time
participants spent in each feature. Although participants
reported equal preference for Interleaved PDC and Exact
Matches, on average they spent more time in Exact Matches.

The case studies were open-ended, with a facilitator (one of
the authors) giving participants a tutorial of the system for 10-
15 minutes and then the participants interacting with the system
in whatever way they were most interested in. Participants were
asked to share their screen and to think aloud as they worked.
The facilitator asked questions during the study to illuminate the
participants’ goals, findings, and struggles; the interview guideline
is in Appendix D. Case studies lasted between one and two hours.

We report two kinds of results. The first is a set of themes that
emerged about the utility of the different features. These themes
were determined by two authors watching the case studies, writing
descriptive summaries of each, and then collecting and collating
themes iteratively. The second is an analysis of how user pref-
erences, task, and the number and length of responses informed
differences across the case studies. This analysis was done via re-
peated conversations with all paper authors, all of whom read the
descriptive summaries of the case studies and two of whom had
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Table 2: Details of the participants in the case studies.

ID Domain Task/s Max Num.
Responses

Approx.
Words per Response

P1 creative writing generating insightful connections;
generating character voices

20 500

P2a, P2b model auditing;
intersectional AI

how models treat identity markers;
how models understand historical events

39 100

P3 creative writing story continuation;
poetry writing

40 50

P4 journalism prompt engineering for journalistic feedback 50 250

P5 academic writing prompt engineering for writing task;
improve section outline

20 150

P6 business business idea generation 50 350

P7 law identifying trademark confusion 20 200

P8 history how agency is represented in responses to
questions about historical events

100 100

watched the video recordings. During our analysis, we recognized
that similar themes identified for the controlled user study (see
Table 1) were emerging. This demonstrated the generalizability of
these themes.

6.1 Utility of Different Features
In this subsection we go over the features and how they were useful
(or not) in different contexts. Features could perform quite differ-
ently in different contexts, where the combination of a participant’s
goal and the way the feature performed on the responses they were
inspecting accounted for variation in utility.

6.1.1 Exact Matches. As in the controlled user study, participants
used Exact Matches mostly to identify how consistent or diverse
a set of responses was (i.e., more exact matches indicated more
consistent). However, participants were sometimes unsure if there
should be many exact matches or not. For, instance P1 asked the
facilitator if there should be so few exact matches. Across most of
the tasks there were few exact matches, and the matches tended
to be syntactic phrases (such as “The relationship between” or
“However, it is important to note”) rather than semantic ones.

One exception to the trend of few exact matches came in P8’s
use case, where they looked at the Falcon7B [3] model’s response to
a question about the industrial revolution. In this case, there were
many sentence-length exact matches. This meant they were able
to use the un-highlighted text to identifier outliers in responses.
Most participants worked with an OpenAI GPT model, so it may
be that some models have less variation—and more exact matches—
than others. With P8, for the same prompt there were far less exact
matches when prompting GPT4 than Falcon7B.

6.1.2 Unique Words. Several participants used Unique Words as
a kind of extractive summary of a response. P1’s first task was
asking a model to identify how two unrelated concepts might be
related, with the intention of getting the model to generate “in-
sightful connections.” As soon as he turned on Unique Words he

commented that the highlighted words might be considered “inter-
secting” words between the two concepts, and subsequently used
this feature to skim through responses to quickly identify what con-
nection(s) the model had generated. P6, who had a model generate
business ideas in response to a prompt about how to support the
circular economy, noted that Unique Words allowed her to quickly
identify what the generated business idea was about or its general
domain (e.g., fashion, or food packaging).

Other participants thought that Unique Words could summa-
rize a response, but found that, as implemented, it did not quite
do what they wanted. P7 prompted a model to identify potential
ways two trademarks might get confused. She thought that Unique
Words could be useful to skim the “argument” of the response, but
determined that it didn’t really do this. To consider a very different
context, P3, after having a model generate a poem in the style of a
particular poet, wanted Unique Words to highlight “strong choices”
or “interesting phrases” rather than just words that were unique,
as unique words were sometimes circumstantially unique rather
than unique in a way that related to the task at hand.

6.1.3 Grid PDC. As in the controlled user studies, Grid PDC al-
lowed participants to determine consistency or uniqueness across
groups of responses in a way that went beyond exact matches. P1,
when having a model take on different character “voices” (such as
answering a question as if it were the philosopher Hegel or a secret
service MI6 Officer), used Grid PDC to immediately and visually
tell whether or not the model had a strong sense of what that char-
acter was like. If, for example, the set of responses in the voice of
Hegel was highlighted in similar colors, indicating the text had been
grouped by the PDC algorithm, P1 knew the model had developed a
distinct character voice; in contrast if the colors were more varied, it
meant the model had no distinct voice but responded to the prompt
quite differently each time. If the model was generating a distinct
character voice, P1 would then use the highlights to determine
what characteristics were present by looking at what the grouped



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Katy Ilonka Gero, Chelse Swoopes, Ziwei Gu, Jonathan K. Kummerfeld, and Elena L. Glassman

sentences were about. In a very different context, P5 was trying
to determine if his chosen model was capable of doing the rewrit-
ing task he had prompted, where the goal was to have the model
rewrite a paper section outline to be more clear and concise. He
noted that, outside the case study, when he uses an LLM with a chat
interface, he is often trying to determine if the model is incapable
of doing the task or if the problem is one of prompt engineering.
Grid PDC helped him view at a glance, by looking at around five
responses to each of several prompt variations, whether or not the
model was capable of the task at hand. P7, looking at ways two
trademarks might get confused, used Grid PDC not to skim over
semantic variation but syntactic variation. She would focus on a
particular cluster and look at the variation across responses, some
of which would use different adjectives which could make a big
difference when adjudicating trademark confusion.

However, Grid PDC did fail if there was too much variation. P3,
looking at story continuation and poetry generation, had nothing
highlighted in this view because there was so much variation across
the generated responses. Another failure mode was the opposite:
so much was highlighted that it was difficult to identify clusters.

6.1.4 Interleaved PDC. Similar to the controlled user study, Inter-
leaved PDCwas useful to identify smaller variations within a cluster
of similar sentences. P5, who had prompted the model to rewrite
an outline to be more clear and concise, talked about this view as
“shopping cart” mode, where he could pick the best version of a
rewritten sentence. P2b, looking at how a model understood certain
historical events and historical writers, particularly enjoyed how
this view allowed her to see repeated phrases and syntactic patterns
that occurred across responses which, had the model known more
about the events or people, should have been more distinct. P6,
looking at business idea generation, thought this view was useful
for noticing themes, as each cluster showed responses that had a
similar business idea.

The main issue with Interleaved PDC was a lack of context. P7,
looking at trademark confusion, felt she needed to see sentences
in context in order to understand what they really meant. In con-
trast, P5, asking the model to rewrite an outline, felt context was
not quite as necessary, perhaps because the task was list-like and
therefore each sentence was not as dependent on the surrounding
sentences. P2b, looking at historical events and writers, similarly
was unworried by lack of context, perhaps because she was less
interested in the utility of a particular response and more interested
in reading “across” responses in order to understand generally how
a model would respond to certain prompts.

6.2 Differences Across User Attitudes, Tasks,
and Number and Length of Responses

6.2.1 User Hesitancy with Many Responses. Several participants
were hesitant to look at too many responses at once, generally
because they assumed it would be too overwhelming. This was the
case with P4, who had been doing prompt engineering via an API;
P5, who was familiar with a chat interface and regenerating only a
few times to test prompts; and P8, who looked at four responses
per prompt and would use automatic analysis for larger numbers
of responses.

All of these participants, when the facilitator suggested looking
at more responses, immediately saw the value and began to attempt
new kinds of tasks. For instance, P5 noted that he could put together
a better single response by inspecting and selecting portions of
many responses. He said, “the more the better, because I have more
ways to choose from...the more I can explore.” P4 noticed that her
prompt failed 1 out of 50 times, which was important as she wanted
to incorporate the prompt into a web application where incorrect
outputs would break downstream functionality. P6 realized that
she could inspect up to 50 business ideas at a time, and then drill
down into subsets of ideas around a common theme to identify the
most innovative ideas, which would be impossible to do with fewer
responses.

Not all participants had this initial hesitancy. Some participants
had an existing practice inspecting many responses, such as P3 who
often looked at 100s of responses when using an LLM to generate
creative writing. Others, such as P1, P2a, and P2b, had wanted to
look at many responses at once but had never had an appropriate
interface to do so. These participants were interested in model
capabilities generally, rather than using a model to do a particular
task. It may be that users interested in understanding models, rather
than using them, may more easily understand the utility of our
system, whereas users with specific tasks may need demonstration
to see the potential for many responses to be useful.

One participant retained their hesitancy even after experienc-
ing our exploratory interface. P7, looking at trademark confusion,
could not imagine looking at more than 20 responses at a time,
and thought 10 was an appropriate number. P7 also had the least
experience with LLMs of all our participants.

6.2.2 Task Stage and User Preferences Impacted How Many Re-
sponses to View at Once. Even participants who wanted to inspect
100s of outputs would sometimes want to only see a few at a time.
A quintessential example was P3, working on creative writing, who
wanted to go over 100s of outputs but felt seeing them all at once
was overwhelming. This is a reflection of the information process-
ing style preferences we saw in the email rewriting task, where
some participants wanted to see all the emails at once and others
wanted to be able to view just three at a time. While information
processing style may be driving user preferences here, it was also
the case that some participants wanted to view fewer responses
after first having inspected manymore. For instance, both P1 and P6
noted that viewing many responses allowed them to notice which
subsets of responses were most relevant to their task, and then dig
into this subset.

6.2.3 Response Attributes Required Algorithms be More Adaptive.
Some participants looked at very short responses, just one or two
sentences; P3 even suggested wanting to look at sentence fragments.
Others looked at responses with five or more paragraphs, getting
up to 500 words per response. P4 wanted to look at outputs that
were returned as a JSON array, a very distinct syntactic format we
had not considered. As these attributes changed, the algorithms
needed to respond to them appropriately. For instance, the PDC
algorithm segmented responses based on a sentence parser, which
was not appropriate for responses only one or two sentences in
length, nor JSON outputs. As responses got longer and the number



Supporting Sensemaking of Large Language Model Outputs at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

of responses got higher, the number of clusters detected by PDC in-
creased, often resulting in too many clusters to highlight in distinct
colors. With shorter and smaller numbers of responses, our Unique
Words algorithm would often highlight less meaningful words, as
the TF-IDF metric had insuffieicnt data for patterns to emerge.

7 DISCUSSION
Overall, we saw that the existing and novel features we designed
can support LLM response sensemaking. Our novel algorithm, PDC,
and both the Grid and Interleaved renderings, were particularly
helpful for a variety of tasks, and often the most popular feature
with participants, indicating the value of algorithms and renderings
that are designed specifically for LLM responses. As LLMs are
increasingly adopted, supporting end-users, system developers,
and system examiners in making sense of the stochastic capabilities
of LLMs becomes an increasingly important area of study. Given
that the features implemented in this work are in line with design
implications of Variation Theory and Analogical Learning Theory,
the results suggest that there may be further utility of these theories
for guiding the design of future systems that help users make sense
of data and form mental models from examples.

7.1 Design Implications and Future Work
We report on design implications that arose from our studies. The
suggested features were either explicitly mentioned by participants
or developed through observation of how participants used and
responded to our exploratory interface.

7.1.1 NewAlgorithms and Renderings. When participants discussed
the utility of the features, they often suggested new algorithmic
goals or additional renderings that would better support their tasks.
For instance, while participants consistently used Exact Matches to
determine how consistent or diverse responses were, participants
also commented that the highlighted phrases were mostly stylistic
or syntactic phrases, rather than semantic or content-heavy ones.
In this way, they wanted a different feature, one that did not focus
solely on exact matches but rather one that took into account other
features in the text. Below we list a variety of new algorithm goals
for highlighting words or phrases:

• Select words or phrases unique to a general linguistic corpus
(rather than to the set of LLM responses).

• Select phrase-length “fuzzy”matches, rather than exactmatches.
• Select only exact matches which contain “content” words, as
opposed to phrases that are more stylistic.

• Allow users to select a single PDC group and remove the
highlighting of other groups to improve visual focus.

• Show descriptive characteristics of the PDC algorithm out-
put, such as number of sentences per group.

• In the Interleaved PDC view, allow users to see the response
from which a given sentence came from.

We also saw a need for applying algorithms over subsets of
responses. For instance, instead of highlighting words that are
unique to a single response, highlight words that are unique to the
set of responses from a single model or prompt. All our algorithms
(and future algorithms) could be applied to, for instance, rows or

columns, which would allow the algorithms to reflect meaningful
variation across user-selected subsets of responses.

7.1.2 Support User-Defined Queries. Although we did not want
users to have to pre-determine a specific “lens” (i.e., search term)
through which to view the data initially, after interacting with our
features many participants wanted to customize the algorithms in
some way. For instance, participants wanted to define a phrase on
which to search for “fuzzy” matches, or define the part-of-speech
an algorithm focused on. Another route would be to let users write
their own algorithm, which could then be applied to the responses.
In a way, our features represented good “defaults” that let users
determine what kind of queries they would like to create or cus-
tomize.

7.1.3 Support Response “Subsetting”. Many users wanted to “drill
down” into a subset of the responses, or select or save responses
such that they could view just these “good” ones without having
to sort through the rest. Interface features to support this kind
of dynamic inspection of responses would allow users to move
along the sensemaking process, narrowing the responses they are
investigating. A very simple version of this is allowing users to
collapse or hide columns or rows of responses; more sophisticated
versions include letting users mark some responses to “store” and
letting them hide all unmarked responses at a later point, or letting
them dynamically hide or show individual cells.

7.1.4 Support Explicit Annotation. Future work could use our ex-
ploratory interface as the basis for an annotation tool, where anno-
tations could then be exported for analysis or used to subset the
data. This would allow users to partake in more structured tasks
while retaining the utility of the highlighting features. This could
also make response inspectors useful in the 1000+ response scale,
where users typically focus on annotation rather than sensemaking,
but still could use the support of algorithms and renderings.

7.1.5 Integrate Automated Analysis into Response Inspectors. Some
participants noted that they do use automated analysis as part of
their sensemaking process. For instance, they may apply sentiment
analysis to LLM responses and then inspect responses according
to which sentiment bucket they fall in. We see potential for inte-
grating such analysis into response inspectors where, for instance,
responses could be colored according to how they are classified by
an algorithm, or reordered in the grid according to their classifica-
tion. We still firmly believe that, in sensemaking processes, users
must be able to look at the raw text itself as automated analysis
may hide or fail to capture variation that users would be interested
in if they knew it was there. But visually incorporating automated
analysis could be the best of both worlds: users can make use of
automated analyses to direct their attention, but retain closeness
to the text.

7.2 Limitations
7.2.1 Limitations based on algorithm and rendering implementa-
tions. As we consider our work to be a tech probe to better un-
derstand how to support the inspection of many LLM responses
at once, the algorithms and renderings could be improved. There
were small problems with our implementation. Occasionally Exact
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Matches would highlight, e.g., a three-word and four-word phrase
in different colors, although the three-word phrase was a subset
of the four-word phrase. Sometimes the PDC groups got too large,
resulting in it not being clear why two sentences were clustered
together. On the rendering front, users noted that some colors in
the highlighting were too similar to distinguish. Although these
problems decreased the utility of the features, we did not observe a
huge impact on our results.

7.2.2 Limitations to our studies, and future directions for study.
The controlled user study explored only two tasks. While our case
studies attempted to test a wider range of tasks, they could not
dive deep into any one task. Future work could more precisely
investigate the utility of LLM response inspectors for specific tasks,
such as auditing models for harmful content, end-user selection
of a preferred model, or prompt engineering for system designers.
Another angle would be to investigate particular domains, such as
the use of LLMs in legal or medical contexts.

A final angle for future studies would be testing at larger scales,
e.g., 1000 responses at once, which is 10 times the upper limit of
what case study participants examined for tasks they brought with
them to the session. We saw that with less than 10 responses total,
users typically can read all responses with little support. Similarly,
in the case studies we rarely saw participants express interest in
much more than 100 responses, at least all at once. However, we
did not test many tasks that focused on outlier detection, like in
a business context where preventing harmful or strange outputs
from occurring is more important. It may be that there are some
outlier detection tasks where many 100s of responses, even 1000s,
are necessary. However, it does seem like, once we get to 1000s of
responses, users typically engage in formal annotation studies. As
mentioned in subsubsection 7.1.4, incorporating formal annotation
features into a response inspector could be beneficial.
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A FORMATIVE INTERVIEW GUIDELINE
The interview guideline was meant to be extremely broad, given
the range of kinds of LLM-based tasks participants were engaged
in. Here we list all questions, however many were not relevant
for certain participants, and many custom follow-up questions
were asked depending on the context in which the participant was
working.

• How do you select models or design prompts?
• Do benchmarks work for you? Do you use metrics? Trial and error?
To what extent does quantitative evaluation or benchmarks work
for your use case?

• Do you ever regenerate or compare outputs? What about between
prompts or models?

• Have you noticed models changing over time? Have you tried dif-
ferent models?

• How do you know your system is working? What’s success for you?
• How often do you update models / prompts?
• What might help qualitative evaluation?
• What does qualitative evaluation look like? Are you comparing

models, prompts, other things? Do you rely on annotations, having
people read outputs and discuss, or other methods?

• Does any evaluation involve comparing multiple outputs in a way
other than via annotation? Do you ever look for qualitative differ-
ences between outputs? e.g., “This prompt produces more verbose
and flowery outputs.”

• When you have people manually inspect outputs, howmany outputs
does any one person typically look at at a time?

B FEATURES IMPLEMENTED
B.1 Exact Matches
Here we describe in more detail the exact algorithm used to detect exact
matches:

We first look for the longest common substring between all possible
pairings of responses.We split any substrings that cross sentence boundaries,
as this often resulted in exact matches that didn’t represent meaningful
text segments. We remove substrings with fewer than three words, as we
want to prioritize text segments rather than single words, though this is
a variable that could be tuned. All substring matches are then matched
to each other across all responses, not just the initial pairing they were
originally derived from, such that for each substring we know how many
responses in the whole collection it occurs in. Substrings are sorted based
on a weighted function of a) how many responses that substring occurs in
and b) how long the substring is. For the study, we give length of substring
a weight of .75 and number of responses it occurs in a weight of 1.8 Finally,
the top k substrings are returned, where k is the minimum of 12 and half
the number of all responses in the collection. The value 12 is selected as a
maximum value based on the fact that we intended to visualize each match
in a different color, and we had a palette of 12 colors which we thought to
be visually distinct.

B.2 Positional Diction Clustering (PDC)
B.2.1 Definition of content similarity. Our score for content similarity is
( |𝑋𝑖𝑛𝑌 | + |𝑌𝑖𝑛𝑋 | )/( |𝑋 | + |𝑌 | ) , where 𝑋 and 𝑌 are the two sentences,

8Future work could look at how to balance or side-step the tension this algorithm
creates between identifying shorter matching text segments that are prevalent across
many LLM outputs and longer matching text segments that only occur in a smaller
subset of LLM outputs.
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and |𝑋𝑖𝑛𝑌 | is the count of words in 𝑋 that appear in 𝑌 . This is the same
as Bray–Curtis Similarity except that our numerator is the sum of counts
rather than two times the min of counts.

B.2.2 Details of clustering. We use a form of single-linkage agglomerative
clustering to form groups of sentences across all responses. First, we split
all responses into individual sentences and calculate similarity as described
in Section 4.3.3. We start with each sentence in its own group. Then, we
iterate through all pairs of sentences, sorted by their text similarity, and
if a metric that combines text similarity and position similarity is higher
than a threshold, we consider combining their groups. The metric is a linear
combination of the two similarities, with a weight of 1.5 on text similarity
and a weight of 1 on position similarity, and the threshold is 1.2. When
considering combining groups, we only merge them if at least 70% of the
sentences are from distinct responses. The groups are ordered by their
median normalized location in responses, with ties broken to put sentences
from longer documents first.

B.2.3 Notes on choices.

• Measuring content similarity with exact diction overlap. This metric
is chosen because it maximises the graying out which is used in
the second rendering, Interleaved Layout. That, in turn, helps users
notice what is similar and different across sentences within the same
group.

• Using both content and location similarity in the grouping algorithm.
This ensures that the groups correspond to parts of the emergent
templates in responses. Location similarity alone would lead to
groups with no coherent meaning. Content similarity alone could
lead to groups with sentences from the start of one response and
the end of another.9

• Only merging groups if the new group has sentences from a range of
responses. This helps form groups that represent emergent patterns
across responses, rather than patterns within individual responses.

C USER STUDY
C.1 Procedure Details
Participants were walked through informed consent, and then audio and
screen recording began. Participants then filled out a short demographic
survey, including questions about their exposure to LLMs. Participants then
went through two different tasks—the email rewriting task and the model
comparison task—doing each task twice, once in each condition. For the
first task, before each interface condition, participants were shown a short
tutorial introducing the interface’s features.

Within a given task, e.g., email rewriting, the order of the scenarios
remained the same and the interface conditions were counterbalanced. After
completing the task in each scenario, participants filled out a short survey,
which included close-ended questions about cognitive load, how realistic
the task was, and how well they believed they had performed on the task.
After each task, the facilitator conducted a short semi-structured interview
with open-ended questions about the utility of the features in both inter-
faces. At the end of the study, the facilitator stopped the recording, allowed
participants to ask questions about the study, and conferred study payment.
See Appendix subsection C.6 for survey and interview questions.

C.2 Determining Time on Task and Time in
Feature

We used the study video recordings to manually determine the amount of
time each participant required to finish each task, as well as to identify if
9For such a group, it would be unclear where to show it in the Interleaved Layout
rendering. For instance, the mean location, the middle, would not be faithful to the
source location for any of the sentences. The median location would either be the start
or end, which would not be faithful to half of the sentences.

participants manually edited their email or used copy/paste in task one, and
note if participants used the keyboard search function (command+F) when
evaluating model differences in task two. We also used the video recordings
to manually log the total time each participant spent in each of the five
system features while completing task one and task two. Members of the
research team evaluated the timing data for accuracy.

C.3 Baseline Interface
Figure 9 shows the baseline interface using the same example prompt (writ-
ing a short story for a child about a creature) found in subsection 4.3.

C.4 Participant Details
Figure 10 shows participant responses to the pre-study survey questions.

C.5 Task Prompts
C.5.1 Email Re-writing.

• Task 1A:
I’m writing an email to my professor asking for a let-
ter of recommendation. Could you rewrite it to be more
style? Make sure it’s less than 100 words.

Hi Prof. Sandy,
I took your intro to algorithms class last fall and got
an A. I really liked the class and thought you were a
great teacher. The class was super hard; can’t believe
I got an A, haha! I am applying to a summer internship
as a software engineer and was wondering if I could put
you down as a reference. If you can’t do it, no worries!
Thanks,

[your name]

• Task 1B:
I’m writing an email to the person who will be my man-
ager for my summer internship. I already have the job
offer, but I want to ask to start two weeks later than
suggested. Can you rewrite it to be more style? Make
sure it’s less than 100 words.

Hi Sandra,
I’m really excited about my summer internship with your
team. I am already thinking of project ideas! I know
that you said the internship start date for all interns
is May 1st. But could I start two weeks later than that?
Obviously then I would end two weeks later as well. To-
tally get it if this isn’t possible, but it would re-
ally help me out to make this change. Thanks,

[your name]

C.5.2 Model Comparison.

• Task 2A:
There’s a general audience nonfiction book I’d like to

read about neuroscience. I won’t have time to read it

all. What are some ways I can read just part of it, or

skim the book, to get the most out of the book and my

time? Keep your response to less than 100 words.

• Task 2B:
I have a week until an important final exam. I need to

study a lot. What do you recommend I do to make sure

I perform at my best? Keep your response to less than

100 words.

C.6 Pre-Study Survey
(1) What is your participant ID?

(Open-ended response, ID given to participant by researcher)
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Figure 9: The baseline interface allows users to collapse or ‘hide’ groups of responses, such that all or just some groups of
responses can be seen at once. Responses can be grouped by model or prompt variation. The example here uses the same
example from Figure 1: “Write a short story for a five year old child about a {creature} that loses something and then finds it
again."

(2) What is your age?
◦ 18-24 ◦ 25-34 ◦ 35-44 ◦ 45-54 ◦ 54+

(3) What is your gender?
◦ Woman ◦ Man ◦ Non-binary ◦ Prefer not to disclose ◦ Other:

(4) What kind of student are you?
◦ Undergraduate ◦ Masters ◦ PhD ◦ Other:

(5) What is your field of study?
(Open-ended response)

(6) How confident do you feel when writing important emails? For
example, asking for an extension on a project.
(Answered on a seven point Likert scale from "Not very confident"
to "Very confident")

(7) How much do you know about large language models or chatbots
like ChatGPT?
(Answered on a seven point Likert scale from "I have not heard of
these things" to "I feel like I am an expert on these models")

(8) How much have you investigated the differences between different
language models, for instance the differences between GPT-3.5 and
GPT-4?
(Answered on a seven point Likert scale from "I have never investi-
gated this" to "I have investigated the differences extensively")

(9) How often do you use large language models or chatbots like Chat-
GPT?
◦ Never ◦ I’ve used them a few times, but not regularly ◦ A few
times a month ◦ A few times a week ◦ Once a day or more

(10) How often do you use large language models or chatbots like Chat-
GPT for writing? (That is, not for coding or searching for informa-
tion.)
◦ Never ◦ I’ve used them a few times, but not regularly ◦ A few
times a month ◦ A few times a week ◦ Once a day or more

C.7 Post-Task Interview
After completing the second version of each task, participants received the
following questions in a post-task interview:

(1) What was your approach toward doing this task?
◦ Was it different in different interfaces (linear v. grid)?

(2) Did the linear or grid view make it easier to find the best output?
(Why?)

(3) Was the linear or grid view more overwhelming? (Why?)
(4) Were the grid highlighting or grouping features useful? (Why or

why not?)

(5) Is there anything that I didn’t ask about that you want to share?

C.8 Email Rewriting Survey
(1) What is your participant ID? (Open-ended response, ID given to

participant by researcher)
(2) Which email rewriting task did you just do?

◦ Asking for a reference letter ◦ Requesting a later start date
(3) Which interface did you have?

◦ Linear inspect node ◦ Grid inspect node
(4) How mentally demanding was the task?

(Answered on a seven point Likert scale from "Very low" to "Very
high")

(5) How hurried or rushed was the pace of the task?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(6) How mentally demanding was the task?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(7) How successful were you in accomplishing what you were asked to
do?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(8) How hard did you have to work to accomplish your level of perfor-
mance?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(9) How insecure, discouraged, irritated, stressed, and annoyed were
you?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(10) How realistic was the email writing task?
(Answered on a seven point Likert scale from "I have never had to
write an email for that purpose" to "I have written emails for that
purpose in the past")

(11) How close was your selected response to something you would
send?
(Answered on a seven point Likert scale from "I would never send
that response" to "I would definitely send that response")

(12) How close was your edited response to something you would
send?
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(a) “How confident do you feel when writing important emails? For example,
asking for an extension on a project.”

(b) “How much do you know about large language models or chatbots like
ChatGPT?”

(c) “How much have you investigated the differences between different lan-
guage models, for instance the differences between GPT-3.5 and GPT-4?”

(d) “How often do you use large language models or chatbots like ChatGPT?”

(e) “How often do you use large language models or chatbots like ChatGPT
for writing? (That is, not for coding or searching for information.)”

Figure 10: Participant responses to pre-study questions about
experience with writing and LLMs.

(Answered on a seven point Likert scale from "I would never send
that response" to "I would definitely send that response")
After completing the second task, participants completed this
Email Re-writing Survey again and received two additional
questions:

(13) Which interface made the task easier?
(Answered on a seven point Likert scale from "linear inspect node"
to "grid inspect node")

(14) Which interface felt more overwhelming?
(Answered on a seven point Likert scale from "linear inspect node"
to "grid inspect node")

C.9 Model Comparison Survey
(1) What is your participant ID? (Open-ended response, ID given to

participant by researcher)
(2) Which model comparison task did you just do?

◦ Advice on how to skim read a book
◦ Advice on how to prepare for finals

(3) Which interface did you have?
◦ Linear inspect node
◦ Grid inspect node

(4) How realistic was the advice topic?
(Answered on a seven point Likert scale from "I have never asked
for similar advice before" to "I have asked for similar advice before")

(5) How mentally demanding was the task?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(6) How hurried or rushed was the pace of the task?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(7) How successful were you in accomplishing what you were asked to
do?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(8) How hard did you have to work to accomplish your level of perfor-
mance?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(9) How insecure, discouraged, irritated, stressed, and annoyed were
you?
(Answered on a seven point Likert scale from "Very low" to "Very
high")

(10) Thinking about the differences between models, how well were
you able to determine the differences?
(Answered on a seven point Likert scale from "I wasn’t able to
determine many differences" to "I was able to determine most or all
of the differences")

(11) Which features were most helpful to detectingmodel differences?
□ Grid layout □ Exact Matches □ Unique Words □ Similar Sentences
□ Groupings View
After completing the second task, participants completed this
Model Comparison Survey again and received two additional
questions:

(12) Which interface made the task easier?
(Answered on a seven point Likert scale from "linear inspect node"
to "grid inspect node")

(13) Which interface felt more overwhelming?
(Answered on a seven point Likert scale from "linear inspect node"
to "grid inspect node")
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Figure 11: Boxplot of how much time participants spent in
each feature when using the exploratory interface. Here
‘none’ refers to being in the grid interface with no highlight-
ing features activated. Note that time spent in a feature does
not necessarily indicate that a participant found the feature
useful.

C.10 Email Rewriting Task Results
C.10.1 Learning Effects: Participants Were Faster the Second Time
Around. Participants found both email rewriting tasks to be quite
realistic. Analyzing their responses to 7-point Likert scale survey
questions with a two-tailed Mann-Whitney U test, participants felt
significantly more “hurried or rushed" in task A than task B (p <
.01). Analyzing their time on task with a two-tailed t-test, split into
the ‘select’ portion of the task and the ‘edit’ position of the task, we
found that participants also took significantly more time on task A
(select portion: p < .05, edit portion: p < .01). This aligns with their
survey responses; participants took more time during task A and
felt more rushed. For this reason, we split our analysis comparing
interface conditions between task A and task B.

C.11 Model Differences Task Results
Figure 13 shows participant responses to the question “How many
differences did you find?”: a self-reported measure of success in
the task. We see that participants reported finding more differences
with the exploratory interface than the baseline interface.

D INTERVIEW GUIDELINE FOR CASE STUDY
• Explain consent details (recording, how data will be aggregated,

anonymized, and used for research purposes, their ability to opt out,
and their right to request a copy of the paper) and verbally request
for their consent to record. Begin recording via Zoom.

• Demo interface
• Request for participant to open the interface and share their screen
• Send API keys; get them running on the interface
• Ask them to think aloud through their process; guide them to more
interesting prompts if necessary; ask them what they are thinking
about or seeing. Encourage them to try out all the features. Explain
how features work when requested.

• Sample interview questions:
– What kinds of tasks or information do you want to look at?

Compare prompts, models, prompt variables? Look at long tail
distribution, or set of standard responses?

(a) “Which interface made the task easier?”

(b) “Which interface was more overwhelming?”

Figure 12: Participant interface preferences for the email
rewriting task.

Figure 13: Participant responses to the question “Thinking
about the differences between models, how well were you
able to determine the differences?”

– Observations: What feature do they try first? Second? Ask why
they tried particular prompts.

– Does this tool support your exploration and inspection of outputs?
– What works? What is missing?
– How would you complete the selected task without this tool?
– How does this experience differ from your prior interaction with

LLMs?
– The goal is to aid in skimming and comparison of responses: does

it do that?
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