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Figure 1: A user is iteratively teaching a neuro-symbolic model to distinguish between different concepts (labels). The process

begins with the user labeling some data points (1). This allows the neuro-symbolic model to learn pattern rules about the label

and suggest annotations to unseen data points (2). As the user reads and accepts or rejects model-suggested labels, Mocha

uses an LLM to generate counterfactual examples that structurally resemble the original data point and match the original

patterns but have different predicted labels (3). When presenting the generated counterfactual examples to the user Mocha

emphasizes the changed parts and de-emphasizes the carried-over parts of each sentence while highlighting (in the associated

label’s color) where the current neuro-symbolic model would fail on the generated counterfactuals (4). The user then assigns

labels to the generated counterfactual examples by accepting or rejecting the LLM-generated labels to be used in consecutive

model training (5). As the user provides feedback through labeled data, the model iteratively learns and adjusts its decision

boundary, to better align with the user’s mental model and labeling criteria (6).
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Abstract

An important challenge in interactive machine learning, particu-

larly in subjective or ambiguous domains, is fostering bi-directional

alignment between humans and models. Users teach models their

concept definition through data labeling, while refining their own

understandings throughout the process. To facilitate this, we in-

troduce Mocha, an interactive machine learning tool informed
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by two theories of human concept learning and cognition. First,

it utilizes a neuro-symbolic pipeline to support Variation Theory-

based counterfactual data generation. By asking users to annotate

counterexamples that are syntactically and semantically similar to

already-annotated data but predicted to have different labels, the

system can learn more effectively while helping users understand

the model and reflect on their own label definitions. Second, Mocha

uses Structural Alignment Theory to present groups of counterex-

amples, helping users comprehend alignable differences between

data items and annotate them in batch. We validated Mocha’s

effectiveness and usability through a lab study with 18 participants.

CCS Concepts

• Human-centered computing→ Systems and tools for inter-

action design; User interface programming.

Keywords

human-AI collaboration, machine teaching, variation theory, struc-

tural alignment theory

ACM Reference Format:

Simret Araya Gebreegziabher, Yukun Yang, Elena L. Glassman, and Toby

Jia-Jun Li. 2025. Supporting Co-Adaptive Machine Teaching through Human

Concept Learning and Cognitive Theories. In CHI Conference on Human

Factors in Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama,

Japan. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3706598.

3713708

1 Introduction

In supervised and semi-supervised machine learning (ML) pipelines,

labeled data is a vital component of training and validating mod-

els [46]. Interactive ML (IML) methods, like active learning [3],

continuously apply human feedback during model training to itera-

tively build and refine the model [35, 42, 43]. A targeted approach in

IML is machine teaching (MT) [60], an interactive framework that

allows users to devise and select useful data for labeling, with the

goal of teaching the model relevant features during training [7, 18].

Through labeled data, human users “teach” an underlying concept

to the model [50]. In a MT pipeline, humans act as experts on

concepts with an explicit goal of creating ML models through a

teacher-student interaction. The approach of MT heavily resem-

bles the co-adaptivity of human-to-human teaching in which the

teacher illustrates concepts, assesses the learner’s progress and evo-

lution of a concept [40, 56], and iteratively revises their teaching

approach [38, 60].

Prior work in IML has incorporated human input into model

training and refinement through iterative processes of labeling and

reviewing [50]. A prominent form of input is when humans pro-

vide labels for representative training examples, with the goal of

adjusting model parameters [53]. When training samples are scarce,

model performance heavily depends on the quality of available

training examples [15]. However, relying exclusively on existing

examples is not ideal for tasks requiring nuanced understanding of

user intentions, as these examples often fail to represent diverse

and edge-case scenarios [31]. While using synthetic data for active

learning has promising results to mitigate data scarcity [49], much

of this work prioritizes optimizing model performance, offering

limited support for human learning and critical reflection—an es-

sential component of MT. To support users in building accurate

conceptual models during model teaching, Gillies et al. [30] argue

that interfaces should be reframed to account for human cognitive

processes. Data labeling as a cognitive task—including defining a

concept or determining how two similar objects may have different

labels—requires both comparison and integration [62].

To address these needs, we introduce an interactive tool called

Mocha. Mocha presents novel interaction mechanisms inspired

by two human cognition theories. First, the Variation Theory of

human concept learning [44] informed a new approach to generate

synthetic counterfactual data for users to annotate. Secondly, the

Structural Alignment Theory [27] guides the design of Mocha’s

interface for presenting generated counterfactual examples in batch,

which assists users in perceiving and comprehending the alignable

differences between data items and annotating these data items in

batch.

Counterfactual Data Generation. In the counterfactual data

generation phase, once a user annotates a small initial dataset,

Mocha employs a Variation Theory (VT) [44]-based pipeline to

create synthetic data. VT posits that human learning occurs when

learners experience variation across critical and superficial aspects

of a concept—through exposure to contrasting examples that sys-

tematically vary along different critical and superficial feature

dimensions. Inspired by VT, our pipeline starts with the neuro-

symbolic model’s current (and potentially imperfect) learned pat-

tern rules, which can be thought of as feature dimensions. It then

generates counterfactual data that are syntactically and seman-

tically similar enough to an already-annotated datum that they

would be given the same label by the neuro-symbolic model’s pat-

tern rule, but different enough that they would be given a different

label by a standard pre-trained large language model. Therefore, the

generated data poses the hypothetical question [19]: “How should

the model’s prediction change if certain aspects of the input were

altered?”

Consider this analogy to illustrate the counterfactual approach

for refining concept boundaries; a user and a model are negotiating

how to define a sandwich. Although both may start with their own

definition, neither is accurate or specific. We suppose that the user

starts with a definition “a sandwich is two slices of bread with meat

in between.” Although this definition may be a good candidate, it

misses important features that make a sandwich a sandwich. In this

analogy, our proposed approach would ask the user if grilled cheese

is a sandwich as a counterfactual proposition. This counterfactual

highlights the discrepancy between the outcome of executing the

proposed rule (grilled cheese would not be a sandwich because of

the lack of meat) and a pre-trained model’s understanding (grilled

cheese IS a sandwich according to the LLM). By highlighting the

difference between the original definition (having meat in between)

and a new synthesized definition with the new counterfactual exam-

ple annotated (having any filling in between), the two entities are

able to iteratively negotiate and reach a shared definition of sand-

wiches. This iterative redefinition would continue along different

feature dimensions of a sandwich (like the number of breads, the

type of bread, etc.) until an optimal shared agreement is reached.

It is worth noting that this is a collaborative negotiation rather

than a debate. Neither of the parties came to the interaction with a
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complete definition of sandwiches and tried to convince the other

party. Instead, they came with an incomplete definition, were open

to reflect on and change their own conceptual understanding based

on interactions, and shared the goal of reaching clearer boundaries

of the target concept.

Structure Aligned Data Rendering.Mocha employs Struc-

tural Alignment Theory (SAT) [27] to support the user’s cognitive

process of interpreting and understanding varying generated data.

According to SAT, humans compare two similar entities by trying

to find structural alignments between them, and then comparing

corresponding elements, with a special focus on differing aligned

elements. Mocha contrasts the original user-labeled data with gen-

erated counterfactual examples, by visually emphasizing portions

of the counterfactuals that have changed over the parts that stayed

the same. Specifically, Mocha displays unchanged elements of the

counterfactual examples in gray. In contrast, elements that have

changed—andmay thus influence a change in label—are highlighted

in black, drawing the user’s attention to these critical differences.

By assisting users in comparing discrepancies between their own

label definitions and the neuro-symbolic model’s learned decision

boundaries, users can provide annotated data that can update the

model to align with their expectations.

We validated the usability and effectiveness of Mocha in a lab

study with 18 participants. Participants reported that the tool’s

workflow enhanced their understanding of both the underlying

model’s behavior and the data itself. Mocha was also shown to sig-

nificantly improve annotation efficiency and improve the model’s

performance in learning user intents. These findings point to im-

portant design implications for future human-AI alignment efforts.

Specifically, they underscore the need for co-adaptive systems that

can evolve along with users’ mental models and definitions of la-

bels. Our findings also highlight the implications of closing the

loop in supporting human cognition with proposed interactive ML

pipelines. This adaptability is crucial for fostering deeper and more

effective interactions between humans and artificial intelligence in

complex data environments.

This paper makes the following contributions:

(1) We contribute a SAT-based rendering method for counter-

factual examples.

(2) We built Mocha to understand how Variation Theory-based

counterfactual generation [24] combined with SAT-based

counterfactual rendering affects the human’s experience in

co-adaptive machine teaching.

(3) A lab study with 18 participants to demonstrate the usability

of Mocha and its effectiveness in improving annotation

efficiency, enhance the model’s learning, and facilitating co-

adaptive learning where users gain insight into the states of

the model and reflect on their own understanding.

2 Related Work

2.1 Human-AI Alignment through Data

Annotation

Alignment is a bilateral process; it refers not only to AI acting

according to human intentions but also to humans better leveraging

AI by understanding the mechanisms behind it [54]. In this process,

both the trainer and the learner aim to develop and maintain an

accurate understanding about the target concept. In the machine

learning pipeline, one way users show their intentions is through

annotating data [66]. However, when labeling under uncertainty

or in the initial training phases, users may lack an understanding

of the model capabilities.

Machine teaching, a part of the human-in-the-loop approach,

has been used as a process in which a human expert (the “teacher”)

provides guidance to a machine learning model to help it learn im-

portant and robust features for decision making [57]. In this work-

flow, humans continuously guide the model to align its learning

with their intentions. A common way to do this has been through

data annotation [68]. To align model training with human intent

through data annotation (1) the human needs to understand the

current state of the model and (2) the human should be able to

take action to steer the model in their desired direction [66]. This

signifies that alignment demands not only that humans should be

able to steer AI in their desired direction but also that humans need

to understand the current state of AI and what it has learned in

order to better utilize the latest AI advancements.

Previous work shows that, although incomplete, users may pos-

sess some knowledge about target concepts [58, 59], which they use

as a reference when building classifiers IML [10, 56]. AnchorViz [56]

and Alloy [10] provide more context to the users through clustered

data to help them determine what should and should not belong

to different labels. As users interact with more context and data,

their definition of the concept could shift and evolve [40]. A key

challenge here lies in designing interactive systems that both ac-

knowledge the dynamic nature of users’ conceptualizations and

transparently illustrate how these evolving inputs influence the

model’s outputs [50]. Consequently, this also requires the model to

demonstrate how it adapts to the user’s preferences to enhance its

interpretability and increase human trust in the system [36].

2.2 Active Learning and Counterfactuals

Active Learning (AL) in machine learning is an approach in which

the learning algorithm selectively chooses which data points should

be labeled for training [20]. The primary goal of this approach is

to minimize the amount of labeled data needed to learn a target

concept by requesting labels, usually from humans, for the most in-

formative examples, allowing the concept to be learned with fewer

annotations [3]. To accomplish this, pool-based [69] and instance

synthesis-based (also called query synthesis) [52] selection strate-

gies have been used. An example synthesis-based strategy can be

especially effective in domains with ambiguous and subjective label-

ing, as it creates new, potentially informative examples that broaden

the distribution of labeled data while continuously adapting to the

model. Counterfactual generation can be seen as a more targeted

form of query synthesis. While query synthesis broadly creates new

examples to inform the model, counterfactuals specifically explore

“what-if” scenarios by modifying existing instances in meaningful

ways [51]. Counterfactuals have been used to test the sensitivity

of a model to small changes to refine its understanding of causal

relationships [19]. Both query synthesis and counterfactuals aim

to generate examples that are useful to the model. However, not all

examples are equally informative for the model or equally easy to

label for humans [13].
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Due to the inherent complexity of language and its discrete na-

ture, natural language counterfactual generation presents greater

difficulties compared to structured and image data. For that rea-

son, natural language counterfactuals have seen limited explo-

ration. Previous works have proposed both generation-based and

augmentation-based approaches. Schumann and Rehbein [52] uses

variational auto-encoders to generate examples from uncertain

regions in a model’s latent space to improve a classified model.

Alternatively, Dixit et al. [14] uses a retrieve-then-edit framework

to generate counterfactuals by conditioning on naturally occur-

ring data. With the generative capabilities of large language mod-

els (LLMs), there have been more efforts to automatically generate

plausible counterfactuals by augmenting real examples [11, 14, 63].

Polyjuice [63] uses a fill-in-the-blank approach to generate coun-

terfactuals by perturbing specific parts of a sentence according

to predefined control codes (e.g., negation, quantifiers, or lexical

modifications). Similarly, DISCO [11] uses spans to determine what

needs to change. Although both approaches use different methods

to determine what needs to change, they find that the counterfac-

tuals improve the downstream model’s performance.

Most previous research in counterfactual generation has focused

on the model side by either generating counterfactuals to improve

the model’s performance or explaining its behaviors post hoc. As

intended with the design of Mocha, we believe this process should

encourage users to engage in analogical thinking, enhancing their

reflection and understanding of the underlying concepts when

they are not well defined. Mocha uses human cognitive learning

theories to support human annotation efforts for model training.

Specifically, we use Variation Theory of learning [44] which states

that for learning to occur, some aspects that define the concept

being learned must vary while others are held constant.

2.3 Supporting Sensemaking Based on Variation

Theory and/or Structural Alignment Theory

Structural Alignment Theory (SAT) [27] is a cognitive theory that

explains how people make sense of concepts by comparing rela-

tional structures between two items. It states that understanding

and sensemaking involve mapping the relationships between el-

ements, especially in complex and ambiguous tasks. While SAT

focuses on similarities and differences within alignable structures,

Estes and Hasson [17] highlights the significant role of bringing

salience to “non-alignable” differences. In decision making, SAT ar-

gues that people tend to focus on alignable differences—features that

can be directly compared—rather than on differences that cannot

be easily aligned. Although its application remains limited outside

of the field of psychology, SAT has been used in broad domains

such as consumer behavior research [37], spatial data analysis [12],

Human-Robot Interaction (HRI) [6], and Human-Computer Inter-

action (HCI) [64]. The last two prior works also combine Variation

Theory (VT) and SAT together, as we did (i.e., a corollary of SAT

referred to as Analogical Transfer/Learning Theory).

In developingMLmodels, annotators often engage in a process of

comparing instances within the data, not just to match surface-level

features such as keywords, but to discover relational patterns that

inform their label definitions and boundaries [41]. Therefore, SAT

provides a useful and applicable framework for thinking about data

annotation, particularly in domains where annotators continuously

define and refine labels during model training.

Comparison as a means for sensemaking also finds relevance

in modern tools designed for large-scale output sensemaking; two

previous tools explicitly leverage SAT and Variation Theory (VT)-

based designs. Positional Diction Clustering (PDC) [29] is a struc-

ture mapping engine [28] introduced to facilitate sensemaking of

many LLM responses to the same or similar prompts. It finds a

structural mapping across all the LLM responses and can high-

light alignable differences within that alignment using text salience.

ChainForge [2] provides an interface to compare model outputs,

where the variables that create the systematic variations in mod-

els and model prompts correspond to dimensions of variation in

Variation Theory. Both systems enabled users to quickly identify

variations and patterns within the data and support exploration

and hypothesis testing.

In line with previous work, Mocha aims to support a user’s

efforts in the disambiguation of concepts through structural com-

parisons of counterfactual data in the context of machine teaching.

Specifically, Mocha highlights variations between data items to

help users identify inconsistencies between their own label inter-

pretations and the model predictions. In the context of interactive

ML, where users are in charge of labeling data with the goal of

influencing the model’s training, interactive error correction is cru-

cial [9, 55]. By presenting relational structures (e.g., causal chains

for wrong predictions in counterfactuals) instead of just showing

learned feature importance, Mocha helps users understand how

the system makes decisions and identify how their annotations

could change the model’s behavior.

3 System Description

Machine teaching with exploratory data labeling requires users to

provide distinguishing training examples of a concept [33]. When

labeling similar data with subtle differences, users must compare

data points while incorporating concept definitions [62]. In the

context of co-adaptive learning, supporting the intertwined evolu-

tion of both the user’s understanding and the model’s learning is

crucial [16].

To support users in providing informative training examples

based on the model’s current state, the back-end pipeline of Mocha

integrates a neuro-symbolic approach with LLMs to guide the syn-

thesis of counterfactuals that resonate with human cognitive pro-

cesses. Building on methods proposed in PaTAT [24], Mocha first

generates human-readable neuro-symbolic pattern rules from par-

tially labeled text data for classification. Then, Mocha generates

synthetic counterfactual text data that share syntactic and semantic

patterns with the original text data, yet differ in the outcomes of the

labels predicted by an LLM. This approach allows users to annotate

data near conceptual boundaries, improving their understanding

of the current limitations and capabilities of the neuro-symbolic

model, as well as possibly facilitating the evolution and refinement

of their own notions of the concepts involved. These annotations

are pivotal for the model to learn user-specific values, preferences,

and goals.
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Counterfactual generation based on Variation Theory allows the

implementation of Structural Alignment Theory on Mocha’s inter-

face design to render and highlight alignable differences between

original and generated data items in real time. This facilitates the

user’s sense-making process of discerning key differences among

items and reasoning about how and why they lead to different

labels during annotation. Thus, ultimately improving the efficiency

and effectiveness of the model teaching process.

The section begins by outlining the design goals of Mocha,

presents a motivating user scenario, discusses its key features, their

rationale, and how they connect to the design goals, and concludes

with implementation details.

3.1 Design Goals

Mocha is designed to assist the user in their data annotation efforts

and sensemaking while simultaneously providing useful training

data for the model’s learning. Specifically, Mocha follows these

design goals:

DG1: Facilitating User Understanding of the Model’s Cur-
rent State. Teaching is inherently exploratory. Aligning model

training through MT with human values iteratively requires clear

user understanding of themodel’s current state [55]. This is achieved

by providing transparency in the model’s decision-making pro-

cesses, emphasizing areas of uncertainty or salience, and illustrat-

ing the model’s data interpretations. Such insights enable users

to recognize where the model excels, where it falters, and how it

evolves over time, empowering them to make informed decisions

to refine and enhance the model through targeted annotations.

DG2: Augmented Data Should Refine the Model’s Decision
Boundary . The impact of labeled data is crucial in refining the

model’s decision boundary, particularly within areas of high uncer-

tainty [65]. Therefore, the data annotated in each iteration should

improve the model’s understanding of its decision boundaries. Aug-

mented data should spotlight edge cases and ambiguous instances

near the decision boundary [8]. Addressing these cases improves

the model’s generalization capabilities and offers users deeper in-

sights into its decision-making processes.

DG3: Enhancing Interface Support for User Annotation of
Generated Data. Research has identified data annotation as a crit-

ical bottleneck in the model training pipeline [4]. While the origi-

nal data is a fixed resource, augmenting data can be strategically

aligned with users’ cognitive processes to facilitate sensemaking.

Traditional annotation methods, which rely heavily on manual

reviews, often fall short in handling complex datasets and coun-

terfactual examples. To address this, Mocha’s initial phases of

data integration employ interaction mechanisms that simplify the

identification and annotation of data points. These mechanisms

contribute to a more diverse and comprehensive dataset and clarify

the intricacies of decision boundaries. This requires the develop-

ment of interfaces and visualizations that demystify the generated

data, allowing systematic variation and coverage across the concept

space.

3.2 Motivating User Scenario

Alice is working on training a model to classify text snippets from

online reviews. Although she has an idea of the possible labels

in the dataset, there is some uncertainty about which features

are most relevant for the model’s training and how these features

define the feature space for each label. She is also exploring how to

differentiate between seemingly overlapping concepts, for example

weather friendliness of a restaurant staff should belong to the label

service or environment. Alice decides to use Mocha to iteratively

label data and train a classifier model. While she iteratively trains

the model she expects to have a more complete understanding of

what appropriate features each label should contain and have a

solid definition of the labels.

Alice uploads her dataset into Mocha, a tool designed to iter-

atively align the model’s learning process with the user’s mental

model. She begins the process of assigning labels to data items.

After every ten annotations, Alice notices the tool suggests labels

to unlabeled data items based on learned pattern rules (Fig 2-A).

These rules, generated by a neuro-symbolic model, are constructed

using program synthesis to find an optimal combination of domain-

specific language that best fit Alice’s labeled positive and negative

examples (details in Appendix A.3). The rules aim to capture the dis-

cerning features of each label based on Alice’s annotations. While

some of the suggested rules align with Alice’s mental model, others

may be too broad or fail to accurately reflect her intended label

definitions.

To see data with suggested labels (Fig 2-C), Alice can click on a

pattern rule (Fig 2-A) to filter data points that match the selected

pattern rule (DG1). As Alice clicks on the data point to assign a

label to it, Mocha generates counterfactual examples (Fig 2-E) that

are structurally close to the original data point she is currently

labeling. The generated counterfactual examples match the learned

neuro-symbolic rules (Fig 3-D) but are labeled differently by an

off-the-shelf LLM (Fig 3-C, DG2).

After labeling the original data point (Fig 2-B), Alice moves on

to label the generated counterfactual examples. When examining

them in batch, her attention is drawn to the differences between

the original and counterfactual examples, with the differing parts

highlighted in black and the unchanged parts in gray (Fig 3-E and

F, DG3). Each of the generated counterfactuals match the learned

patterns and are incorrectly labeled by the neuro-symbolic model.

With the generated counterfactual examples, Alice sees what the

model is learning and failing to learn. By labeling the counterfactual

examples, Alice provides the model with additional data points to

fortify the interpretation of a label, as shown by the learned pattern

rules. At the same time, making labeling decisions on data points

that are at the model’s decision boundary helps Alice refine or con-

firm her own understanding of the label. The labeled counterfactual

examples are then used during consecutive model training. After

each round of annotation the neuro-symbolic model updates its

learned rules and this process continues until Alice’s interpretation

of each label finally aligns with the model’s.
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Figure 2: Mocha uses neuro-symbolic pattern rules (A) to generate counterfactuals. For each example labeled by the rules (B),

Mocha generates counterfactual examples that match the original patterns (D) but belong to a other than the original label (C).

The generated counterfactuals are then rendered below the original example with highlighting of what has changed and what

has stayed the same (E) for each alternative label.

Figure 3: Mocha facilitates analogical reasoning using visual

cues. For each model-labeled example (A) and its correspond-

ing learned neuro-symbolic rule (B), counterfactual examples

are generated for a set of target labels (C). Phrases consis-

tent with the original example are displayed in gray text (E),

while varying phrases are displayed in black text for visual

salience (F). Additionally, the text of the counterfactual that

would mislead the neuro-symbolic model into classifying it

as the original label (by matching the original label’s rule)

are highlighted in the theme color (D), helping users under-

stand how their annotations contribute to model updates.

3.3 Key Design Features

This section describes the following key design features of Mocha

to support the continuous training and alignment between humans

and AI.

3.3.1 The Generation of Alignable Counterfactuals. Counterfactual
examples enhance the training of a model by generating misclassi-

fied instances, which the model can then correct through retraining.

This process works because counterfactuals reveal edge cases in

the model’s learned decision boundaries. Gebreegziabher et al. [24]

argued that counterfactual generation that follows the principles

of VT allowed the introduction of discriminatory variance for the

model to learn on. According to Variation Theory, learners better

understand concepts by observing variations along critical features

(dimensions of variation) that define that concept and, separately,

observing variations along superficial features that do not define

that concept—all while other features, when possible, are held con-

stant. For instance, students who see triangles in different orienta-

tions can deduce that the defining characteristic of a triangle is its

three sides and not its orientation. Building on that, in Mocha, we

adopt this approach to develop a user-facing interface that supports

a user’s learning in parallel to the model’s learning.

To integrate VT into counterfactual generation, this method be-

gins by identifying key features and introducing variations while

still satisfying the predefined neuro-symbolic pattern rules [25]
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that currently define the machine-learned concept; these pattern

rules are interpretable features the model has learned as critical

for a given concept (see details in Appendix A.3). The rules en-

compass lexical, syntactic, and semantic elements—including part-

of-speech tags, word stems, synonyms (soft matches), and entity

types—organized in regex-like patterns. These patterns help capture

commonalities across datasets with similar labels (Fig 2-A).

In other words, for each label, the learned neuro-symbolic pat-

terns reflect the model’s current interpretation of that label; data

points that match the model’s linear combination of the neuro-

symbolic patterns would be classified with that label. Therefore,

when the learned patterns are inaccurate, the generated counterfac-

tuals should provide examples that match the sub-optimal pattern

but likely correspond to a different label. To facilitate generating

counterfactuals along this dimension of variation, our approach

starts by prompting an LLM to generate candidate phrases that

match the learned pattern (Appendix A.4). For example, for a data

item that was labeled “product”, the sentence “Breakfast was deli-
cious” that matches the pattern ‘(delicious)|(good)’will have phrases

[‘well priced’, ‘pretty cheap’, ‘worst deal’, ‘good but overpriced’] gen-

erated as candidate phrases for a target label “price”. The candidate

phrases are used to enforce that the augmented counterfactual

always includes the learned neuro-symbolic pattern. In the coun-

terfactual generation prompt (Appendix A.5), we explicitly instruct

the LLM to modify the original example, making minimal changes

while still including the generated candidate phrases, to change

the original label into a set of different target labels (see Algo-

rithm 1) (DG2).

Algorithm1Generates counterfactual data based on learned neuro-

symbolic patterns

Require: Original dataset 𝐷 , User label𝑈𝐿 ,Target label 𝐿

1: function GenerateCounterfactuals(𝐷,𝑈𝐿, 𝐿)

2: Initialize 𝐷𝑐 𝑓 as an empty dataset

3: for each 𝑑 ∈ 𝐷 do

4: 𝑝𝑑 ← GetSymbolicPattern(𝑑,𝑈𝐿) ⊲ Generate patterns
based on the user assigned labels

5: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃ℎ𝑟𝑎𝑠𝑒𝑠 ←
GenerateCandidatePhrases(𝑑, 𝑝𝑑 , 𝐿) ⊲ Generate phrases that

match the pattern but are about target label 𝐿

6: 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 ← GenerateVariations(𝑑, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑃ℎ𝑟𝑎𝑠𝑒𝑠, 𝐿)
⊲ Change parts of the sentence with one of the candidate

phrases

7: for each 𝑣 ∈ 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 do
8: 𝑐 𝑓 ← CheckPattern(𝑣, 𝑃) ⊲ Check if counterfactual

matches pattern 𝑃

9: if 𝑐 𝑓 successfully flips the label to 𝐿 then

10: Add 𝑐 𝑓 to 𝐷𝑐 𝑓

11: end if

12: end for

13: end for

14: return 𝐷𝑐 𝑓

15: end function

3.3.2 Facilitating User’s Perception of Similarity and Differences.
Assisting users to perceive consistencies and variations across differ-

ent data points enables them to quickly develop an accurate mental

model [29, 48]. To support this process, Mocha draws design inspi-

ration from the Structural Alignment Theory [27] of how humans

compare and contrast objects. Structural Alignment Theory states

that humans naturally look for structural mapping between repre-

sentations of objects to help them understand, compare, and infer

relationships between said objects. In our context, these objects are

the original examples and their counterfactuals. In rendering the

generated counterfactuals, Mocha facilitates analogical reasoning

through the mapping of the counterfactual label (Fig 3-C) and the

generated counterfactual.

To assist users in assessing the appropriateness of the counter-

factual label for the generated example, Mocha uses visual cues

enabled by the structure of variation induced by the Variation

Theory-based counterfactual generation method in the previous

step. Specifically, the changes introduced to change the original

example into the counterfactual are highlighted in black (Fig 3-F) to

draw user attention to them. This black text stands out more promi-

nently than the unchanged text, which is rendered in gray (Fig 3-E).

To determine this mapping, Mocha adopts the Levenshtein dis-

tance algorithm [67], which calculates the minimum number of

edit operations at the word level required to transform the original

example into the counterfactual example generated. Specifically, we

define two types of edit operations: additions (inserting words) and

deletions (removing words). The algorithm splits each sentence into

its component words and identifies the shortest sequence of opera-

tions to transition from one sentence to another. Our objective is to

minimize the number of operations while striving to maintain the

longest continuous phrase unchanged between the two sentences.

For example, given the original sentence “Breakfast was delicious”,

and a counterfactual sentence “Breakfast was pretty cheap”, the al-

gorithm would identify a delete operation for the word ‘delicious’

followed by an insert operation for ‘pretty cheap’.

3.3.3 Comparison Through Carried Over Matched Neuro-symbolic
Rule. Mocha aims to facilitate the user’s understanding of where

and why the neuro-symbolic model’s understanding diverges from

their expectations. To support this, it leverages the executable na-

ture of the learned neuro-symbolic rules. Mocha highlights phrases

in generated counterfactual that match the learned ‘imperfect’

neuro-symbolic (Fig 3-D). This process can be understood as the

common relational structure between the original and counterfac-

tual examples.

A key visual aid in this process is the use of theme colors (Fig 3-

D), which highlight parts of the counterfactual that could have

misled the model into making incorrect classifications. By applying

a consistent and striking color to these terms, the system visually

projects the model reasoning process onto the interface, making

the inference projection process possibly easier to understand for

users. From a cognitive perspective, the theme color aligns with

the human’s (theorized) structural mapping engine [27] by making

relational discrepancies between the original and counterfactual

examples more explicit. The model’s reasoning is “projected” onto

the counterfactual, enabling users to easily see which aspects of the

counterfactual match the model’s existing rules, and which aspects
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lead to erroneous inferences (DG1). This immediate feedback sup-

ports users in correcting the behavior of the model by adjusting the

labels and refining the classification boundaries through targeted

interaction.

3.4 Implementation

The interactive Web application of Mocha was developed using

React
1
. The backend server utilized Python’s FastAPI

2
framework

to facilitate communication with OpenAI’s API and to the frontend.

In the backend, candidate phrases and counterfactuals were gen-

erated using the GPT-4o model from OpenAI through API calls.

We used Firebase
3
to track and store participant’s interaction log

data. Both the front-end and the back-end were hosted on a Google

Cloud
4
server for the user study.

4 User Study

The user study
5
aims to evaluate the effectiveness of Mocha’s key

features, informed by Variation Theory (VT) and Structural Align-

ment, on augmented data annotation and bi-directional alignment.

Specifically, we evaluate the efficacy of the augmented counterfac-

tuals on the user’s annotation efforts, the model’s learning, and the

user’s learning about the data and the relevant concepts.

The study specifically investigates the following research ques-

tions:

• RQ1: Can Structural Alignment-based counterfactual ren-

dering improve efficiency and lower cognitive load during

the annotation process?

• RQ2: How useful are Variation Theory-based counterfactual

generation in allowing the model to learn about the user’s

intents?

• RQ3: How useful are Variation Theory-based counterfactual

generation and Structural Alignment Theory-based counter-

factual rendering in allowing the users to learn about the

data and clarify their intents to the model?

4.1 Participants

We recruited 18 participants (11 male, 7 female) with varying levels

of experience in developing and training ML models, as detailed in

Table 2 in Appendix A.1. The participants’ ages ranged from 18 to

34 years. Among them, 4 participants self-reported having a begin-

ner level with ML, 10 were intermediate, and 3 were experts. One

participant had no previous experience with ML. More information

on the demographics and backgrounds of the participants can be

found in the Appendix A.1.

4.2 Study Procedure

Each study session lasted approximately 90 minutes and was con-

ducted either in-person in a usability lab or virtually via Zoom (3

in-person, 15 virtual). After obtaining informed consent, the partic-

ipants received a 5-minute tutorial on the key features of the tool.

1
https://reactjs.org/

2
https://fastapi.tiangolo.com/

3
https://firebase.google.com/

4
https://cloud.google.com/

5
The study protocol was reviewed and approved by the IRB at the lead author’s

institution, where the study was conducted.

Participants were asked to train a multi-class classifier model by as-

signing one or more labels to data-items from the given list of labels.

While participants worked with the same set of labels, they were

told to follow their own interpretations of both the labels and data

points. The study used a think-aloud method, asking participants

to verbally express their thoughts while annotating the data. The

participants were then assigned one of two datasets and engaged

with Mocha in three 25-minute sessions under different conditions.

Here, they observed the neuro-symbolic model retrain and update

following each annotation round. The sequence of these conditions

was randomized, and details about the order and specific datasets

are available in Table 3 in Appendix A.2. After each condition,

participants completed a NASA-TLX [34] survey to assess their

cognitive load. The study ended with a post-study questionnaire on

Mocha’s perceived usefulness and usability, and a semi-structured

interview exploring the use of tools and experiences of participants

in different conditions.

The study aimed to observe the participants’ abilities to refine

their subjective definitions of labels and the model’s effectiveness in

learning from the labeled counterfactual data. Initially, we presented

participants with a dataset that included a predefined set of labels,

allowing them the flexibility to define and redefine these labels as

they annotated examples.

4.2.1 Datasets. In this study, we selected two datasets that are open
to subjective interpretation and do not necessitate domain-specific

knowledge from participants. Each participant worked with only

one dataset throughout all conditions. The sampling method for

each condition was designed so that no participant would encounter

the same data item more than once across different conditions.

• Emotions [1] - Each entry in this dataset consists of a text

segment extracted from tales with labels that indicate the

predominant emotion conveyed. Participants worked with 5

categories—fearful, sad, happy, surprised, and anger-disgust.

This dataset contained 100 independent samples for anno-

tating and testing for each condition.

• YELP [5] - This dataset consists of user reviews of businesses

(e.g., restaurants, retail stores) collected from Yelp with 4

categories—price, service, environment, and products. This

dataset contained 160 independent samples for annotating

and testing for each condition.

4.2.2 Conditions. The study used a within-subjects design, where

each participant experienced the system under three different con-

ditions. To minimize carryover effects, the order of the conditions

was varied for each participant.

• Condition 1 (NonVTCounterfactuals): Participants were

asked to label counter examples generated without the use

of VT and neuro-symbolic patterns. The generated counter

examples were displayed without highlighting alignable dif-

ferences for users to label.

• Condition 2 (VT Counterfactuals without alignment):

Participants were asked to label counter examples gener-

ated using VT with neuro-symbolic patterns but without

highlighting alignable differences.

• Condition 3 (VT Counterfactuals with alignment): Par-

ticipants were asked to label counter examples generated
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using the same pipeline as Condition 2 with alignable differ-

ences highlighted in the interface.

4.3 Study Results

4.3.1 Data Analysis. We conducted statistical tests to compare

responses to all the Likert scale survey questions, as well as the

time spent annotating counterfactuals for each condition.

To analyze the annotation efficiency, we first conducted a Kruskal-

Wallis rank sum test [39] to determine if there were statistically

significant differences in annotation time across the three con-

ditions, because our data violated the homogeneity of variances

assumption, making non-parametric methods more appropriate.

To compare each condition against each other, we conducted a

post-hoc pairwise test using the Wilcoxon rank-sum test [47] with

continuity correction and Bonferroni adjustment.

To analyze the Likert scale ratings of the participants from the

post-study questionnaire, we first performed a Friedman test [23] to

determine whether there were statistically significant differences in

participant ratings across the three conditions. Following this, we

used Wilcoxon signed-rank tests with Bonferroni correction [47]

and Kendall’s W [21] for post-hoc pairwise comparisons. These

tests are nonparametric, which is appropriate for the ordinal nature

of Likert scale ratings.

The analysis of the interview results was done through open

coding [61], in which two members of the team coded the interview

transcripts independently and then came together to consolidate.

4.3.2 RQ1: Impacts of Structural Alignment interfaces on annota-
tion efficiency and cognitive load.

Improved annotation efficiency. To understand the impact of

alignable differences on the participant’s annotation efficiency with

the generated text, we compare the average time it took for par-

ticipants to read and make their first annotation on a generated

sentence against the time it took them to complete a batch of anno-

tations (i.e., annotating all generated examples associated with an

original sentence as seen in Fig 3). We calculate time of annotation

as the difference between when the generated counterfactuals are

rendered on the screen to when the participant assigned the first

label, and subsequently all consecutive labels in that view.

On average participants annotated more data points in condi-

tion C3 (84.6, SD=26.0) compared to both C1 (70.82, SD=31.2) and

C2 (69.65, SD=31.0). As shown in Figure 4, participants spent a

similar amount of time to annotate the first data point they saw

across all three conditions. However, the batch annotation times

were notably shorter in Mocha’s counterfactuals (C3). The batch

annotation times for counterfactuals with alignable differences (C3)

were significantly lower compared to both counterfactuals gener-

ated without Variation Theory (C1) (p<.0001) and those generated

with Variation Theory but without highlighted alignable differences

(C2) (p<.0001). There were no statistically significant differences be-

tween C1 and C2 in their batch annotation times. This suggests that

the efficiency improvements are primarily attributable to the spe-

cific features of C3, which is the rendering of alignable differences

between the generated counterfactuals and the original example.

Despite the lack of statistical difference between C1 and C2, the

application of Variation Theory in C2 played a crucial role, enabling

the introduction of alignable differences in C3.

Participants Perceived Mocha as More Useful in Condition 3. In

the post-condition questionnaire, participants compared their ex-

periences across three different conditions. Figure 5 shows their

subjective assessments in four dimensions: knowledge gained about

the data, the degree of control they felt in changing the behavior

of the model, the usefulness of the system, and the ease of using

the system. C3 emerged as notably the superior condition, with

participants reporting the greatest gains in knowledge about the

data, increased control, and enhanced usefulness of the system

compared to the other conditions.

Contrary to the reduced batch annotation time, we did not find

a statistically significant difference in participant ratings of their

perceived ease of use across the three conditions.

However, we find statistically significant advantage of C3 in

the other three measures (p<.05). The participant’s rating of the

knowledge gained in the three conditions revealed a statistically

significant difference (X
2
(2, N=18)=11.6, p=.002) compared to the

other conditions. The effect size, measured by Kendall’s W, was

0.323, suggesting a moderate level of agreement among the rank-

ings. The post-hoc pairwise test showed that the participants rated

their level of knowledge gained about the data in C3 significantly

different from both C1 (p=.02) and C2 (p=.007), while there was

no significant difference between C1 and C2. This indicates that

C3’s structurally aligned rendering led participants to feel they

gained significantly higher level of knowledge compared to the

other conditions. These results align with the participant’s useful-

ness ratings for the three conditions (p=.0009) with an effect size

of 0.39 suggesting a moderate to strong level of agreement among

the ranking. Similar to the knowledge gained ratings, we find no

significant differences between C1 and C2 but significant difference

between C3 and both C1 (p=.01) and C2 (p=.002).

No difference in cognitive load observed. The NASA-TLX scores

revealed no statistically significant differences in cognitive load be-

tween conditions (see Figure 7 in the Appendix A.6). This suggests

that the variations in the counterfactuals generated and their pre-

sentation in C3 did not impose additional mental demands on the

participants compared to C1. More research is needed to determine

whether the interventions introduced in C3 could reduce cognitive

load over extended use.

4.3.3 RQ2: Effect of Variation Theory based counterfactuals on the
model’s learning. A major goal of data augmentation is to improve

the generalizability of the model [14]. To that end, the annotated

data should contribute a meaningful distribution to the model’s

training dataset to align with the user’s own intentions. To assess

the downstream impact of the generated data on model training,

we evaluated the model’s performance when trained only on the

real data and compared it to the model’s performance when trained

on the combination of the real data and the labeled counterfactuals.

The participants’ dataset, including the counterfactuals, provided

a basis for comparing model performance under two conditions:

with and without counterfactuals. Given that participants could

flexibly define their own interpretations of the data, we use each
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Figure 4: Comparison of average annotation times under the three conditions. The table shows that while VT-based counterfac-

tuals increase the time for the first annotation, SAT-based rendering significantly reduces the time for annotating each data

point in the batch.
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Figure 5: Participants’ response to post study questionnaire comparing the three conditions.

participant’s final labels as the ground truth. We calculated the

precision and recall of the model using the finalized labeled data.

In our experiment, we observed that the participants had mod-

erate agreement with each other, measured by Fleiss’ Kappa [22]

(Yelp=0.67, Emotions=0.41). This relatively low agreement score for
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the emotions dataset suggests that the participants did not reach a

strong agreement among themselves about how to label the data

indicating inherent ambiguity and subjectivity in the task. However,

when the model is trained on these somewhat inconsistent labels

and evaluated for agreement with their corresponding participant

individually (using Cohen’s Kappa [45]), the averaged agreement

between the participant and their final model is stronger (Yelp=0.76,

Emotions=0.87).

Table 1 presents a comparison of the final model performance

for each participant. In most cases, the inclusion of labeled counter-

factuals contributed to increases in both precision and recall. The

inclusion of counterfactuals often resulted in a substantial increase

in precision, indicating that the models were better able to correctly

classify relevant instances while reducing false positives. This im-

provement suggests that the counterfactuals provided essential

information that helped refine the models’ decision boundaries.

In scenarios where real data lacked annotated labels, the labeled

counterfactual examples were instrumental in initiating the model’s

learning process and enabling the generation of relevant neuro-

symbolic rules. For example, P4 observed the model learned pattern

rules for the label ‘service’ from labeled counterfactuals generated

for the label ‘price’. Initially, there was insufficient annotated data

for the model to generate patterns for the label ‘service,’ but with

the inclusion of annotated counterfactuals, the model successfully

learned a neuro-symbolic rule for the label ‘service’ which was

(friendly)+*+NOUN
6
. Similarly, P16’s process of labeling and re-

training the model revealed a transformation in both their mental

model and the model’s learned patterns. Initially, P16 viewed the

model’s learned patterns for the label ‘sad’ as “generic”, relying

on rules such as ‘$PERSON ’ (matching all entities under person)

and ‘PROPN|(mourn)’ (matching all sentences with proper nouns

or synonyms of mourn). As the model was retrained with more

targeted examples, P16 observed the emergence of more specific

patterns, such as the rule (weep)++NOUN, which matched phrases

strictly involving synonyms of “weep” followed by a noun.

While this was a common change in how the generated coun-

terfactuals allowed the model to learn pattern rules with higher

precision, some participants observed the model was giving correct

labeling decisions but learning wrong patterns (i.e., write for the

wrong reasons). For instance, P10 noticed that in the early stages

of training, the model learned the pattern (sister)
7
for the label

‘fearful.’ Recognizing this as overfitting to the available labeled

examples, P10 adjusted their strategy to focus on labeling coun-

terfactuals. Specifically, they labeled examples where the pattern

(sister) occurred but were labeled with concepts other than fearful.

This iterative approach eventually led the model to learn more

appropriate patterns, such as (frighten)|(stand) and (small), which

aligned better with their intended concept of ‘fearful’.

The improvement in recall, although present, was more incon-

sistent across participants. In some cases, the integration of coun-

terfactuals significantly enhanced the model’s ability to identify

relevant instances that were overlooked in the original dataset.

For instance, P18’s final model was able to learn the rule [sense]

6
This rule matches any sentence that has synonyms of the word friendly followed by

a single wildcard and a noun

7
This pattern rule matches sentences that include any synonyms of the word sister

| (frightened)
8
When trained with counterfactuals in addition to

the original pattern rule (little) | (dread), it had learned with just

the original examples for the label ‘fearful’ ultimately increasing

the recall. Similarly, for the label ‘environment’ we observe the

model’s generated pattern rule change from (great)+(place) into a

combination of (atmosphere)|(area) and (cozy)|[dining] for P6. These

cases illustrate how counterfactuals can enhance the flexibility

and precision of pattern learning, leading to improvements in re-

call. However, the degree of improvement varied across different

datasets and participants. Notably, the model performance for P18

actually decreased in recall, suggesting that the counterfactuals

provided may have been less impactful, possibly because P18 had

already achieved high performance without them. Further research

is needed to explore these dynamics and understand the variable

impacts of counterfactuals on model performance.

Overall, the incorporation of counterfactuals has generally im-

proved the models’ F1 scores, driven largely by the improvements

in precision. This suggests that counterfactuals have effectively

improved performance without necessitating a significant trade-off

between precision and recall. However, the less consistent increase

in recall underscores the necessity for further research into how

counterfactuals can be designed or selected more effectively to

uniformly boost both aspects of model performance.

4.3.4 RQ3: Co-adaptive learning with VT-based counterfactuals
generation and Structural Alignment Theory-based counterfactual
rendering.

Effects of alignablemapping in participant reading behavior. Through

the think-aloud sessions, we observe a noticeable shift in reading

behavior when participants were annotating data points under C3,

which came with highlighted alignable differences. In this condi-

tion, parts of the text were visually grayed out to denote redundant

content from the original example, leading participants to generally

skip these sections in their think-alouds. Instead, they concentrated

on and vocalized sections of the text that remained bolded, repre-

senting new or added content in the generated counterfactual. This

pattern of selective attention suggests that the visual cues provided

by Mocha effectively guided participants to focus on more relevant

information within the context of unchanged text when making

their labeling decisions. It is worth noting that P3 and P8 mentioned

feeling more comfortable with the more familiar visualization in

C1 and C2 during their first impression of the conditions. When

comparing their initial impression on the conditions, P8 said: “as

I get familiar with this system [C3], I feel more skilled” to use the

highlighted and grayed phrases.

Counterfactuals that followed Variation Theory enhanced model

validation and retraining. Participants mentioned that counterfac-

tuals adhering to Variation Theory significantly aided their under-

standing of the model’s current learning state. Some participants

used counterfactuals to validate the model’s understanding of spe-

cific labels. For example, P3 described their approach: “I think that

is how I am using the counterfactuals to verify that it has actually

learned what is the key part that makes this a product? And so if

it just gives me [counterfactuals] [that are] probably still product,

8
This pattern rule matches all sentences with the literal word ‘sense’ or any synonyms

of the word ‘frightened’.
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PID

Without Counterexamples With Counterexamples

F1-score Precision Recall F1-score Precision Recall

P1 0.43 0.52 0.37 0.63 0.85 0.50

P2 0.47 0.63 0.38 0.72 0.90 0.67

P3 0.64 0.60 0.70 0.80 0.82 0.83

P4 0.46 0.65 0.37 0.85 0.93 0.80

P5 0.45 0.45 0.45 0.78 0.90 0.69

P6 0.61 0.75 0.55 0.84 0.98 0.75

P7 0.40 0.46 0.35 0.66 0.91 0.54

P8 0.51 0.75 0.42 0.55 0.70 0.46

P9 0.64 0.72 0.61 0.77 0.91 0.69

P10 0.45 0.45 0.46 0.85 0.92 0.80

P11 0.42 0.47 0.39 0.60 0.75 0.52

P12 0.38 0.48 0.31 0.63 0.72 0.56

P13 0.57 0.68 0.52 0.75 0.89 0.69

P14 0.41 0.60 0.32 0.73 0.92 0.60

P15 0.44 0.62 0.36 0.74 0.91 0.66

P16 0.54 0.67 0.46 0.67 0.90 0.54

P17 0.68 0.86 0.59 0.67 0.86 0.59

P18 0.92 0.96 0.90 0.78 0.94 0.67

Table 1: The performance of the model with and without labeled counterfactuals for each participant

[then] maybe it has not learned anything about products. It has just

learned things about other things” (i.e., model overfitting). Alterna-

tively, P5 observed that, if the generated counterfactuals belong to

both the original and target labels, the learned pattern rule might

not be accurate enough (i.e., underfitting), remarking, “[the model]

seems more confident” when the generated counterfactuals belong

exclusively to the target labels.

Highlighting alignable differences allowed participants to com-

pare and contrast data points during annotation. Participants found

that annotating counterfactuals—that were rendered with alignable

differences highlighted—helpful in their decision-making. Specifi-

cally, two patterns of decision-making emerged. First, some partici-

pants (P3, P4, P13) used the counterfactuals to revisit their interpre-

tations of the original example and provide additional labels. For

example, P4 adds a “product” label to a sentence they previously la-

beled as “service” after labeling the counterfactuals. In the followup

interview, they reasoned that establishments that sell service as

their products like a doctors office need to have the ‘product’ label

as well. Similarly, P3 stated, “I think by changing different parts of it

[the original sentence], it highlighted a part of the sentence that I was

not previously focused on, and so that did help me sort of reframe from

what I initially had labeled it.” By the end of the session, P3 reflected

on how their initial interpretation of the label ‘service’ had changed:

“I guess, going back to service, I did redefine, like we could also be

talking about like the staff there, so like, including that in the labels.”

We also see participants similarly updating their understanding

and interpretations of labels after seeing the counterfactuals: “it is

more like the loose [definition of] happy we are talking about not just

the word happy, but it sounds like it is just not like a vague mapping

to the emotion” (P16).

Another decision-making behavior we saw consistently, perhaps

an inverse of the previous one, was the participants’ reliance on

their original labeling to decide the counterfactuals’ labels. This

meant that the participants used the original example as an anchor

for their consecutive interpretations. P18 used the original learned

pattern rule for the label ‘fearful’ to provide an additional label for

a generated counterfactual example. Specifically, after seeing that

the generated counterfactual with the suggested label ‘sad’ also

matched the pattern rule for the label ‘fearful’, they annotated the

sentence with both labels and stated, “I did not have that context [in

the previous conditions] like I set up for myself, because reading this,

I have like a story scenario in my head. [If] I did not have a scenario

set up for myself I [would] probably just label it as only sad right

away”. The context provided in C3 allowed participants to infer

additional labels to data points; this rarely happened in C1 (Non VT

counterfactuals) where participants thought the generated exam-

ples were ‘independent’ (P1) from the original example and felt that

they were labeling ‘completely new’ (P18) data points. In C2 (VT

counterfactuals without highlighted alignable differences), despite

following a similar approach to C3, participants struggled to iden-

tify differences between counterfactual examples, suggesting the

effectiveness of highlighting structural consistency and differences

in aiding comparative analysis.

5 Discussion and Design Implications

The results from our user study suggest that both the participants

and the model benefited from the Variation Theory (VT)-based

counterfactuals and Structural Alignment Theory (SAT)-based ren-

dering. Participants were able to efficiently focus on key differ-

ences between the original and counterfactual examples, which

facilitated more efficient annotations. The participants also found
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Figure 6: Our study finds a bilateral relationship between

Variation Theory and Structural Alignment Theory. The Vari-

ation Theory-based counterfactual generation method en-

abled the rendering of structurally alignable differences. In

turn, the rendering supported the users’ sensemaking of the

variation in the generated counterfactuals

Mocha to be useful in helping them refine and evolve their label

definitions while giving them insight into the behavior of the model.

Although the benefits of only Variation Theory-based counterfactu-

als (without SAT-based rendering) were not immediately evident in

participants’ experience, they were critical in enabling SAT-based

rendering, which was found to be effective (Fig. 6). Belowwe further

discuss our findings and design implications.

5.1 A Symbiotic Relationship Between Variation

Theory and Structural Alignment Theory

The results of our study indicate that participants spent signifi-

cantly less time annotating batches of counterfactuals when they

were rendered according to SAT compared to other conditions i.e.,

supporting the participants’ selective focus on the varying phrases,

rather than phrases that stay consistent. Notably, we found no sta-

tistically significant differences in annotation time between C2 (VT-

based counterfactual without SAT) and the baseline condition in

C1. Although the counterfactuals in both C2 and C3 were based on

Variation Theory, the participants’ annotation efficiency was par-

ticularly enhanced by the SAT-based rendering method introduced

in C3. This finding is consistent with previous work that supports

users’ sense-making of text, e.g., by modulating text saliency. Specif-

ically, Gu et al. [32] and Gero et al. [29] both found improved read-

ing efficiency and comprehension with saliency-modulating text

renderings. While SAT-based rendering supported human sense-

making in both Gero et al. [29] and Mocha, we also show that the

combination of VT and SAT support the model’s learning.

To support a user’s cognitive process for comparison [62], the

version of Mocha (C3) that followed a combination of Variation

Theory and Structural Alignment Theory was consistently more

effective. We argue that these two theories form a symbiotic rela-

tionship (Fig. 6). Variation Theory provides the conceptual basis

for generating structurally consistent differences, while Structural

Alignment Theory (SAT) enhances the user’s ability in recognizing

and processing these differences. This symbiotic relationship stems

from the fact that Structural Alignment Theory (SAT) enhances the

salience of differences, while the way we used Variation Theory

(VT) to generate contradicting examples across the boundaries of

labels ensures that these differences are conceptually informative.

By helping users see alignable differences, SAT-based rendering

helps users focus on key variations that are essential to changing

the data item’s label, making it easier to interpret the effects of

changes and their significance. Thus, the integration of both the-

ories enables users to efficiently process and compare variations,

leading to more informed decisions and a clearer understanding of

the model’s behavior.

5.2 Human Cognition and Learning Theories in

the Interactive ML Pipeline

In its design, Mocha controls both how counterfactual data is gen-

erated and how they are rendered to the user. By incorporating

theories such as Structural Alignment Theory and Variation The-

ory, it aims to support the learning of both the human and the

model. These theories have proven insightful for understanding

how humans grasp and compare concepts, shaping the develop-

ment of human-AI collaboration systems for sensemaking [29],

hypothesis testing [2], as well as model training [24]. From a human-

in-the-loop machine learning perspective, Mocha addresses two

seemingly contradictory objectives: (1) generating labeled data that

diversifies the training dataset to aid the model’s learning, and

(2) maintaining structural consistency across the batches of data

presented to users to support their cognitive processes. Mocha

achieves this balance by enforcing a common structure through the

model’s learned pattern rules [25]. By visualizing these consistent

pattern rules, users may be better understanding the behavior of the

model through inference projection [26]. This can not only boosts

the model’s performance but also enable participants to validate or

correct the model during the interactive training process.

Although visual cues for alignable differences in Mocha were

helpful in supporting the participants’ reasoning, Estes and Hasson

[17] argue that while alignable differences can be more straightfor-

ward and easier for comparison, non-alignable differences can also

provide key information that might otherwise remain overlooked.

These differences necessitate a more abstract form of comparison,

prompting users to think beyond simple relational structures and

consider broader conceptual frameworks. For example, when com-

paring planes and cars, their alignable differences can be that they

both have engines, but the engines are different in size. While this

gives us some insight into their definitions, comparing a plane’s

wings and a car’s wheels, which are not structurally alignable but

conceptually and analogically alignable, gives additional insight

to categorizing one for land and the other for air. Future research

should explore how non-alignable differences in AI explanations

affect user decision-making and understanding. Such studies could

determine whether these non-alignable comparisons enhance user

performance and elicit deeper insights in human-AI collaborative

systems.

6 Limitations and Future Work

The current design of the user study, which allowed participants

to interact with each condition for 25 minutes, yielded valuable

insights into their immediate reactions and interactions. However,
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a longer study duration would provide a deeper understanding

of how users engage with the system throughout various stages

of the model’s learning. Extending the study period would enable

observations on how users’ strategies evolve as the model improves,

potentially uncovering significant insights about the long-term

dynamics of human-AI collaboration, especially in relation to trust

building and mental model refinement. Our study also only used

example data from two domains, providing limited evidence to

the approach’s ecological validity in other data domains. In future

work, we aim to investigate longer-term interactions of users in

diverse application domains through deployment studies to uncover

dynamic patterns of collaboration.

We also tested our system exclusively with the training of a

neuro-symbolic model. While this serves as a compelling use case, it

would be beneficial to explore the effectiveness of our approachwith

different types of models, such as purely statistical machine learning

models, deep learning architectures, or hybrid systems, to better

understand the generalizability of our approach across different

paradigms. Different models might offer varying challenges and

affordances in terms of explainability, interaction transparency,

and feedback responsiveness. Exploring these dimensions would

provide more insight into our proposed approach.

7 Conclusion

This paper introduced Mocha, an interactive machine learning tool

informed by two theories of human concept learning and cognition.

Based on the Variation Theory of human learning, it generates

synthetic counterfactual data that are syntactically and semanti-

cally similar to already-annotated data but predicted by pre-trained

large language models to have different labels. Following Structural

Alignment Theory, it renders the generated counterfactuals aligned

in batches with differences and similarities highlighted to support

the user’s cognitive process of interpreting and understanding data.

A lab study with 18 participants demonstrated the usability of

Mocha and its effectiveness in improving annotation efficiency,

enhance the model’s learning, and facilitating co-adaptive learning

in which users gain insight into the state of the model and reflect

on their own understanding. Mocha exemplified the application of

human cognition and concept learning theories in the interactive

machine learning pipeline to support the negotiation of conceptual

boundaries for bi-directional human-AI alignment.
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A Appendix

A.1 User Study Participant Data

PID Level of Education Age Gender ML Experience

P1 Bachelor’s 18-24 Male Beginner

P2 Bachelor’s 18-24 Male Expert

P3 Bachelor’s 18-24 Male Expert

P4 PhD 25-34 Female Intermediate

P5 Bachelor’s 25-34 Male Intermediate

P6 Master’s 25-34 Male Expert

P7 Master’s 25-34 Male Intermediate

P8 Master’s 25-34 Male Intermediate

P9 Master’s 25-34 Male Intermediate

P10 Master’s 25-34 Male Intermediate

P11 Master’s 18-24 Male Intermediate

P12 Master’s 25-34 Female Beginner

P13 Bachelor’s 18-24 Female Intermediate

P14 Master’s 25-34 Female None

P15 Bachelor’s 18-24 Female Intermediate

P16 Master’s 18-24 Male Beginner

P17 Master’s 25-34 Female Intermediate

P18 Bachelor’s 18-24 Female Beginner

Table 2: Participant demographic data

A.2 User Study Participant Task Details

Participant ID Data Condition Order

P1 Yelp C1 - C3 - C2

P2 Yelp C2 - C3 - C1

P3 Yelp C3 - C1 - C2

P4 Yelp C1 - C2 - C3

P5 Yelp C1 - C3 - C2

P6 Yelp C2 - C1 - C3

P7 Yelp C3 - C2 - C1

P8 Yelp C1 - C3 - C2

P9 Yelp C3 - C1 - C2

P10 Emotions C1 - C3- C2

P11 Emotions C3 - C1 - C2

P12 Emotions C2 - C1 - C3

P13 Emotions C2 - C3 - C1

P14 Emotions C3 - C1 - C2

P15 Emotions C3 - C2 - C1

P16 Emotions C1 - C2 - C3

P17 Emotions C1 - C3 - C2

P18 Emotions C2 - C1 - C3

Table 3: User study participant’s assigned data and condition

order

A.3 Neuro-symbolic Pattern Rules

The neuro-symbolic model adopts an iterative learning approach

to delineate the boundaries of concepts represented by data points

and their corresponding ground truth labels. Although the current

simulation study employs ground truth labels, these will eventually

be replaced with human annotations in future interactive systems.

Following a random selection of a subset of annotations, the inter-

active program synthesis method from PaTAT [25] is applied to

derive domain-specific pattern rules that align with the annotated

examples. These rules capture the lexical, syntactic, and semantic

similarities present among data sharing the same label. The pattern

language is composed of the following components:

• Part-of-speech (POS) tags: VERB, PROPN, NOUN, ADJ, ADV, AUX,
PRON, NUM
• Word stemming: [WORD] (e.g., [have]will match all variants

of have, such as had, has, and having)

• Soft match: (word) (e.g., (pricey) will match synonyms

such as expensive and costly, etc.)

• Entity type: $ENT-TYPE (e.g., $LOCATION will match phrases

of location type, such as Houston, TX and California; $DATE
will match dates; $ORG will match names of organizations)

• Wildcard: * (will match any sequence of words)

A.4 Candidate Phrase Generation Prompt

The assistant will create a list of candidate

phrases that match the given symbolic domain

specific pattern. The domain specific pattern

definition is given below. The domain specific

pattern symbols includes the following patterns:

Part-of-speech (POS) tags are capital: VERB, PROPN,

NOUN, ADJ, ADV, AUX, PRON, NUM

Word stemming are surrounded in [] and should have

an exact match: [WORD] (e.g., [have] will match

all variants of have)

Soft match are surrounded by () and will match words

with their synonyms. The list of synonms for

each soft match in a pattern are given in the

user instruction: (word) (word will only be

matched with a limited set of similar words

provided in this instruction)

Entity type start with $ sign: $ENT-TYPE (e.g.,

$LOCATION will match phrases of location type,

such as Houston; $DATE will match dates)

Wildcard is the * symbol and can match anything: *

(will match any sequence of words)

The patterns can be combined using an and operator

(+) or an or operator (|). For example the

pattern 'VERB␣+␣PROPN' will match any sentence

that has a verb followed by a proper noun. The

pattern VERB|PROPN will match anything that is a

verb or a proper noun.

Soft matches can only be replaced with a list of

available words.
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For the following text and pattern, generate as many

diverse example phrases that match the given

pattern and can be part of the given target

label. Separated your answer by a comma

# Example input:

# sentence: 'Too many other places to shop with

better prices .'

# phrase to modify: 'prices .'

# pattern: '(price)+*'

# current label: price

# softmatch: [price:[purchase, pricey, cheap, cost,

pricing]]

# target label: service

# Example output:

# [purchase options, pricey service, cheap help,

pricing plans, cost breakdown]}

A.5 Counterfactual Generation Prompt

Your task is to modify a given sentence so that it

aligns with a target label instead of its

original label, making only necessary changes.

Follow these steps:

- Generate Target Phrases: Identify phrases relevant

to the target label within the context of the

original sentence.

- Modify the Sentence: Use one of the generated

target phrases to adjust the original sentence,

ensuring that:

- The modified sentence no longer fits the original

label and does not reference or imply the

original label in any way.

- The modified sentence is appropriate for the

target label and logically coherent.

- The modified sentence should be natural and

fluent, making sense as a standalone sentence.

- Changes made are necessary while keeping the

original sentence structure as intact as

possible. To preserve the quality of the new

sentence you can remove or add necessary parts.

- The modification includes one of the provided

candidate phrases, replacing the highlighted

portion of the original sentence.

- Explanation (Optional): If necessary, provide a

brief explanation of why the modified sentence

fits the target label.

Explanation of Terms:

* phrase about target label: generated phrases

relevant to the target label that help guide the

sentence modification.
* phrases to include: this includes one phrase from

'phrase␣about␣target␣label' and another phrase

from the user input 'candidate␣phrases'. these

two phrases will be incorporated into the

modified sentence.

* modified sentence: The final sentence after

modification to align with the target label. It

should be natural, logical, and coherent.

* reason: A brief explanation of why the modified

sentence fits the target label.

* label: The final label assigned to the modified

sentence, reflecting its changes.

* Ensure the final sentence is correctly labeled

according to the target label, with no

references to the original label, and with

minimal deviation from the original content.

# Example input:

# Original sentence: 'The wings were delicious.'

# Original label: product,

# Target label: price,

# Candidate phrases: ['yummy', 'tasty', 'flavour',

'deliciousness', 'taste', 'delicious']

# phrase about target label: ['cheap', 'expensive',

'pricey']

# phrase to include: ['taste', 'cheap']

# Example output:

# modified sentence: 'The wings were cheap for the

taste.'

# reason: 'The sentence shifts focus to the cost of

the wings, making it fit the target label price.'

# label: price

A.6 NASA-TLX Results
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Figure 7: NASA-TLX results from the user study
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