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Figure 1: Our SemanticCommit interface, providing users myriad ways to detect and resolve conflicts at global and local levels. 
Our prototype was used as a probe to better understand the needs of users for integrating new information into lists of prior 
information akin to AI agent memory or requirements lists. The screenshot depicts a short list describing a “Squirrel Game,” 
where the user is integrating a new feature. Potential conflicts are highlighted in red and pink to mark degree, and the AI has 
added a new piece of information to the store and proposed an edit to another piece, both marked for human verification. 
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Abstract 
As AI agents increasingly rely on memory systems to align with 
user intent, updating these memories presents challenges of 
semantic conflict and ambiguity. Inspired by impact analysis in 
software engineering, we introduce SemanticCommit, a mixed-
initiative interface to help users integrate new intent into intent 
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specifications—natural language documents like AI memory lists, 
Cursor Rules, and game design documents—while maintaining 
consistency. SemanticCommit detects potential semantic conflicts 
using a knowledge graph-based retrieval-augmented generation 
pipeline, and assists users in resolving them with LLM support. 
Through a within-subjects study with 12 participants comparing 
SemanticCommit to a chat-with-document baseline (OpenAI 
Canvas), we find differences in workflow: half of our participants 
adopted a workflow of impact analysis when using SemanticCom-
mit, where they would first flag conflicts without AI revisions 
then resolve conflicts locally, despite having access to a global 
revision feature. Additionally, users felt SemanticCommit offered 
a greater sense of control without increasing workload. Our 
findings indicate that AI agent interfaces should help users validate 
AI retrieval independently from generation, suggesting that the 
benefits from improved control can offset the costs of manual 
review. Our work speaks to the need for AI system designers to 
think about updating memory as a process that involves human 
feedback and decision-making. 

CCS Concepts 
• Computing methodologies → Intelligent agents; • Human-
centered computing → Natural language interfaces; User studies; 
• Software and its engineering → Requirements analysis; • 
Information systems → Information integration. 
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memory management, AI agents, large language models, impact 
analysis, human-AI grounding, intent specification 

ACM Reference Format: 
Priyan Vaithilingam, Munyeong Kim, Frida-Cecilia Acosta-Parenteau, 
Daniel Lee, Amine Mhedhbi, Elena L. Glassman, and Ian Arawjo. 2025. 
Semantic Commit: Helping Users Update Intent Specifications for AI Mem-
ory at Scale. In The 38th Annual ACM Symposium on User Interface Software 
and Technology (UIST ’25), September 28–October 01, 2025, Busan, Republic of 
Korea. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3746059. 
3747778 

1 Introduction 
In the near-future, people may coordinate with AI agent systems 
through project-specific documents that represent accumulations 
of user intent [66, 92, 100]—lists that we call intent specifications. 
These human-readable accumulations of design requirements, user 
goals and preferences reify common ground [8, 19, 92] between 
humans and AI systems, grounding AI decision-making by keeping 
track of details and goals, surfacing implicit assumptions made by 
AI, and acting as a intermediate representation of an AI system’s 
‘understanding’ which the user can inspect and edit (Figure 2). 

We dream of a world in which people can make semantic com-
mits: committing ideas and details to projects like they commit 
code, and dealing with the “merge conflicts” that may occur. One key 
challenge standing in the way of this paradigm shift is integration: 
how to responsibly and verifiably integrate new information into a 
repository of natural language [92], e.g., to update an AI agent’s 
memory of user intent in a reviewable, concise, and accurate man-
ner, such that the memory remains aligned. How can technology 

assist with the integration of a new piece of information into an 
existing repository at scale (e.g., a design document, a requirements 
list, documentation, a wiki, novel, etc.)? The new information may 
conflict with prior information—something may become incon-
sistent or contradictory. Changing existing information can incur 
the same effect. We frame this challenge for the community as 
semantic conflict detection and semantic conflict resolution, 
since it operates at the level of semantics and concepts, unlike past 
techniques that operate on pre-defined structure and syntax. 

Over brief time-frames and short documents, simple methods— 
such as using LLMs to regenerate entire documents or apply string 
replace operations [56]—can perform edits, but as humans interact 
with agents over long time-frames and complex projects, these 
methods cease to function at scale. Simple vector store architectures, 
seen in retrieval-augmented generation (RAG), also face challenges, 
since detecting semantic conflicts frequently requires multi-hop 
reasoning, a well-known failure mode [25, 36]. How to resolve a 
conflict is also often subjective [14, 49], and therefore a problem 
for HCI, as for example, particular conflict resolutions may incur 
cascades where solving one problem creates another. Systems thus 
need ways not only of identifying conflicts and inconsistencies 
efficiently and accurately at scale, but of interactively assisting users 
in conflict resolution in a way that a) helps users reflect and b) foresee 
the impact of changes, c) only makes the necessary changes without 
touching other information, and d) minimizes user effort while 
maximizing changes’ alignment with user intent. Downstream AI 
systems could use conflict detection results to, e.g., decide whether 
to perform grounding acts [83, 85] such as request for clarification. 

To help researchers better understand the problem of updating 
AI memory of user intent in an aligned manner, in this paper, we 
provide several contributions to the literature. We: 
(1) Define the term intent specification to name grounding doc-

uments that coordinate with AI agents, such as user-defined 
“memory” lists for Claude Code [2]. 

(2) Provide design goals for AI-assisted interfaces for semantic 
conflict detection and resolution, inspired by related literature 
such as impact analysis in software engineering. 

(3) Develop an interface, SemanticCommit, iterating its design 
over two pilot studies. Our system implements a range of af-
fordances for conflict detection and resolution and is intended 
as a probe of user behavior. 

(4) Introduce an architecture for semantic conflict detection at 
scale. Our approach uses induced knowledge graphs, adapt-
ing emerging architecture in retrieval-augmented generation 
(RAG) [36]. To test and compare our approach to prior ap-
proaches in the literature, we also provide an initial evaluation 
dataset (“evals” [87]) across three domains. 

(5) Provide empirical insights from a within-subjects user study, 
examining how users detect, understand, and resolve conflicts 
when updating intent specifications for AI memory, comparing 
SemanticCommit to OpenAI’s ChatGPT Canvas. 

Our findings suggest that AI agent interfaces should enable 
users to perform impact analysis, separating retrieval from 
generation—steps that are currently conflated in many AI-powered 
software engineering IDEs. Surprisingly, although users appeared 
more engaged when using SemanticCommit, they did not report 
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Figure 2: A high-level depiction of our envisioned interaction 
between humans and AI assistants for long-term projects. 
The human-readable intent specification serves as an inter-
mediate layer for enhancing common ground between the 
human and the AI, and grounds the AI’s decision-making. 
We assume future AI agents will have a similar intent spec-
ification layer. Our project squarely concerns how the AI 
updates this memory in a robust, verifiable manner, and in 
the process might surface conflicts to the user to get their 
feedback in resolving them. 

significantly higher workload than the more automated Canvas UI. 
This suggests that the benefits of improved control can offset 
the cost of manual review, possibly by shifting user workload 
away from metacognitive demands [89] that users face when 
prompting in open-ended chat, towards the demands of the actual 
task, such as reviewing conflicts. 

2 Motivation: Intent Specifications Ground 
Human Coordination with AI Agents 

Humans are increasingly managing and validating the outputs of 
AI systems that implement entire software systems like games, 
websites, and apps. To reduce risk and align AI decision-making 
in user preferences, human-readable documents are emerging as a 
mechanism to create and maintain common ground [19] between 
humans and AI systems acting on their behalf [86]. 

Numerous examples are emerging of this interaction paradigm. 
The AI-powered programming IDE Cursor, for instance, can ground 
its behavior in user-made “cursor rules”—markdown documents 
that AIs read to ground their behavior in user preferences—at both 
project-specific and global levels [21].1 Rules range from sweep-
ing commands, like “never use apologies,” to the highly particular, 
like “use vectorized operations in pandas and numpy for improved 
performance.” Users develop these rules over time across many 
interactions. Anthropic has also adopted this paradigm: with the 
Claude Code agent, users create CLAUDE.md files listing project- and 
global-level directives; Anthropic’s own “memory best practices” 

1People have started crowd-source these rules: the “Awesome CursorRules” repository 
and CursorList.com include hundreds of rules lists, contributed by everyday users, 
indexed by programming language, libraries, and use cases. See, e.g., https://github. 
com/PatrickJS/awesome-cursorrules. 

tell users to format memories as “bullet points” and reminds them 
to manually “update memories as your project evolves” [2]. These 
“memories” help Claude Code “remember project conventions, ar-
chitecture decisions, or coding standards that we want to reference 
across sessions” [96]. Not to be outdone, the CEO of Windsurf—a 
competitor to Cursor—just announced a yet-to-be-implemented 
“auto-generated memories” feature where these memories of user 
intent are automatically updated by an AI, which will inevitably 
encounter the very challenges we discuss here.2 

Everyday users are also increasingly coordinating with AI sys-
tems through lists of requirements expressed in natural language. 
For instance, users are generating games from specs that resemble 
lists of software requirements. Here is an excerpt from a real user,3 

to give readers a sense of how these rules appear in practice: 
• The dog barks when the player clicks or taps on the screen, 
making the sheep move faster 

• Sheep should react realistically to the dog’s presence 
• When frightened, the flock should scatter 
This user’s example, which in total has 27 requirements, is only 

the start of an interaction with an AI agent. As the user interacts 
and projects grow in complexity, future AI systems will need to 
assist in the extension and updating of these rules and details. 

We call these lists—cursorrules, CLAUDE.md files, user directives, 
AI memory of user intent, etc.—intent specifications, adapting 
and broadening the notion of requirement specifications in software 
engineering.4 Intent specifications are evolving, comprehensible 
documents of user intent that ground AI decision-making and 
reify common ground between humans and AI systems. We in-
troduce intent specification to underscore that such documents may 
not only cover design details or software requirements, but how the 
AI should communicate to the user, who the user is, the user’s goals 
and dreams, etc. Said differently, an intent specification is not only 
a description of user intent, but may also include information that 
helps an AI agent assume user intent—i.e., background, assumed 
preferences—accelerating the establishment of common ground. 
However, unlike a general memory store—which could be an ex-
tensive collection of all interactions—intent specifications’ purpose 
is to be reviewable, comprehensible and digestible, to be inspected 
and edited by humans. In response to edits, the AI will adjust its be-
havior, such as revising an implementation; the AI may also amend 
the specification in response to the user or to better reflect new 
implementation details and assumptions [92, 100] (Fig. 2). 

As we mention in our introduction, the integration of new infor-
mation into an intent specification is not (always) straightforward. 
People and ideas change. New information may conflict with prior 
information, especially as projects and user interactions stretch 
from days to months and years. Proposed approaches to memory 
with RAG architectures, which store all memories verbatim, do not 
account for these potential conflicts (e.g., [1, 44, 74]). 

To illustrate the nuances of semantic conflict resolution, consider 
two chunks of information regarding a warp drive in a game. One 
chunk states that “the warp drive can exceed the speed of light,” 
2https://x.com/vitrupo/status/1900146068030914740
3https://github.com/vnglst/when-ai-fails/blob/main/shepards-dog/README.md
4Leveson [57] introduced the term “intent specification” in the context of software 
engineering to track requirements. Our definition of intent specification is broader, 
and more loosely defined to support a wide variety of documents and scenarios. 
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while the other chunk specifies that “when the ship’s warp drive is 
activated, it first moves slowly and then suddenly operates at a very 
high speed.” If a new chunk stating “no material can move faster 
than the speed of light” is added, then a contradiction arises with 
the first chunk. However, it is unclear whether it contradicts the 
second about a “very high speed”—which in the full context implies, 
but does not clearly state, faster-than-light travel. Any attempt at 
fully automated semantic conflict resolution is subject to debate in 
such situations because of the ambiguity of natural language. 

Our chief insight is that integration of new information into an 
AI memory store is a process that can require interactive, human-in-
the-loop feedback for aligned resolution. Both users and AI systems 
need support for semantic conflict detection—to understand when 
a conflict has taken place, with what information, and how—as 
well as resolution, as resolving conflicts could involve the revision, 
addition, or deletion of existing information in a manner that may 
add or change details. To resolve conflicts, practical assistance may 
require clarification of ambiguities, constructive negotiation of ideas 
[92], or delegation of tasks [88, 100]. However, it remains unclear 
how users update, and want to update, intent specifications in 
practice. What affordances should AI memory interfaces have 
for the process of integration? How do users think about 
semantic conflicts and what needs do they have for resolving 
them with confidence? How can we help users update intent 
specifications like CLAUDE.md files with confidence? Before 
returning to these questions, we first connect to existing literature 
that can help shed light on this emerging paradigm. 

2.1 Related Work 
2.1.1 Design documents to coordinate work in human teams. 
The rise of intent specifications mirrors what human teams already 
do to coordinate actions. Across many domains—from product de-
sign, to game development, software engineering, UX design, and 
animation—people standardize the vision (look, feel, goals, plans, 
etc) of a project in documents that are often called “design doc-
uments” [11]. These documents serve to establish and maintain 
common ground between parties [19], ensuring each member’s ac-
tions remain grounded in shared understanding and objectives. In 
animation, the design document takes the form of model sheets 
[69], which standardize how to draw characters and other assets. 
Game developers use “game design documents” (GDDs) to keep 
development grounded across a team [20]. In software engineer-
ing (SE) and UX research, need-finding processes produce a “sys-
tem requirements specification” that is passed off to the software 
team [39, 63]. Programmers develop “coding style guides,” or norms 
around naming conventions, comments, and writing tests, as well 
as “contributing guidelines” that establish rules for external con-
tributors. These documents serve to externalize, standardize, and 
coordinate the high-level intent of a team—its objectives, details, 
procedures, and feel—and are revised as the project proceeds [20]. 

Intent specifications, while less formal than code, are a lot like 
software: they encode dependencies among ideas that constrains 
future evolution. These dependencies may be “sequential” (i.e., a 
custom term is defined then used later on) or heterarchical. As in-
teractions continue, teams “commit” new information to the intent 

specification, and must resolve outdated or inconsistent depen-
dencies. Maintaining consistency is paramount, because the very 
purpose of these documents is to enforce consistency and define 
standards. For instance, from a study of game designers: “[She] 
writes the GDD as she is designing the game... taking anything out 
of... the GDD that conflict with the consistency of her plot. [She]... 
wrote her entire GDD... as a list, which she frequently added and 
deleted from as she designed the game” [20, p.9]. The field of require-
ments engineering in SE also stresses the importance of clarity, 
conciseness, completeness, and unambiguous requirements [23], 
with “commission (inclusion of irrelevant or incorrect details) and 
omission (exclusion of necessary details)” as additional concerns 
[66]. However, revising requirements accurately may require con-
sideration of intent information outside formal specifications [57]. 

2.1.2 Impact analysis in software engineering. In software 
engineering, visibility on the ramifications of a feature change or 
addition is called impact analysis: identifying what parts of the 
shared context (code repository) will need to be amended, for the 
change to occur [6]. Impact analysis “predict[s] the system-wide im-
pact of a change request before actually carrying out modifications 
to the system... so that appropriate decisions related to the change 
request can be made, such as planning, scheduling and resourc-
ing... The potential impacts are then interactively validated by the 
user” [38, p. 174-181]. Impact analysis is complemented by feature 
localization (retrieving relevant context to inform impact detection) 
and followed by change propagation (actually making changes to 
code) [24]. In our non-coding context, we might interpret these 
steps as first retrieving relevant info, then detecting what infor-
mation is impacted, then helping users make changes. Note that 
impact analysis is a sense-making task, less a coding one: impact 
analysis primarily surfaces system entities and dependencies that 
may be affected by a proposed change, although some tools do help 
users change the underlying code [50]. 

2.1.3 Conflict detection and resolution techniques and in-
terfaces. Conflict detection and resolution are classic problems in 
computing, usually arising in contexts of collaborative information 
processing to merge asynchronous changes. Engineers have devel-
oped techniques such as version control [70], groupware platforms 
and database synchronization [55, 61, 75], and concurrency-control 
systems [26, 37]. The ‘git‘ command-line interface [76], for instance, 
is a popular version control system where users make “commits”—a 
change to a file repository, alongside a pithy message—to keep 
track of changes. To help users understand differences between ver-
sions, many interfaces present “diffs” [46]. Numerous LLM writing 
tools have been proposed that incorporate diffs, spanning various 
areas such as story writing [17, 18, 99], screenplay writing [68], 
poetry [32], dictation [60], and argumentative [94, 101] and sci-
entific [29] writing. InkSync [56], for example, is a prototype for 
executable and verifiable text editing with LLMs, which shows LLM 
edits as diffs on the document. To make diffs, InkSync uses string-
matching: it relies upon the LLM to reproduce extracts of text to 
change, and then specify the replacement; this method is also used 
by Anthropic Artifacts [78]. 

These conflict algorithms operate on syntax, rather than seman-
tics. Current interfaces provide little to no support for users to see 
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the semantic ramifications of their changes on the rest of the docu-
ment. An example is editing a scene in a novel: would changing a 
lunch between two characters to a dinner setting impact something 
hundreds of pages later? These semantic conflicts require dedicated 
support to detect, visualize, and resolve. Semantic conflict resolu-
tion interfaces must go beyond visualizing what changes were made, 
to what changes could be made, where they should be made, and 
what the effects might be. This resembles feedforward: affordances 
that help the user foresee the impact of an action [67, 93]. 

2.1.4 Human-AI collaboration grounded in shared, interme-

diate representations. HCI has, in a sense, always been about 
communicating to machines through shared representations [4, 41]. 
However, past shared representations had to be strictly formalized— 
into programming languages, domain-specific languages (DSLs), 
schema, etc.—to ensure deterministic outcomes. These shared repre-
sentations helped negotiate agency between humans and machines 
[40], but ultimately could only go so far, as end-users always re-
signed some agency to the representation designer(s) [58, 92]. 

Today with LLMs, we are less limited by this constraint, and 
solutions to the problem of human-machine communication might 
be better found in cybernetics theory [9] than static formalism. 
Effective human-AI communication relies upon tight feedback 
loops [100], but also offering humans control in the form of trans-
parency over AI understanding and context. Along these lines, 
emerging HCI research envisions that AI systems will be grounded 
by shared representations of a more informal nature—lists of direc-
tives expressed in natural language [66, 92, 100]. Some researchers 
even argue that these informal expressions of intention will be 
“all you need” [80, 81]. For instance, Vaithilingam et al. imagine a 
hypothetical AI game design assistant where the AI “[integrates 
user] choices into the project plan” [92], while Zamfirescu et al. 
explore an iterative design loop with an AI agent that “tracks deci-
sions that the human has made” and “surfaces decisions the LLM 
has implemented in the code” in a running list [100]. Ma et al. 
define “requirement-oriented prompt engineering,” helping users 
generate a “clear, complete requirements” list prior to prompting 
an AI to implement software. They stress that making a good list 
requires skill and support [66]. These projects speak to the need 
for targeted support for updating intent specifications that ground 
AI behavior. Ensuring alignment with user intent (e.g., by reduc-
ing inconsistencies) is critical: miscommunications are the chief 
reason for breakdowns with AI agents [88], and the potential of 
failure compounds as communication continues without addressing 
misunderstandings [85]. 

2.1.5 Natural language inference, reference ambiguity, and 
knowledge graphs. Finally, the technical side of our work relates 
to natural language inference (NLI), a research area in NLP [49] that 
concerns the classification task: Given two sentences—a premise 
sentence and a hypothesis–does the hypothesis sentence follow 
from (entailment), contradict, or bear a neutral relationship to the 
premise? HCI scholars have applied NLI to data annotation [95], 
in-situ summaries [62], and LLM response consistency [16]. Our 
discussion of NLI provides additional context for our system design. 

Detecting conflicts is by no means an objective task; human 
annotators frequently disagree [14, 49]. Jiang & de Marneffe [49] 

investigated reasons for human disagreement during NLI classifica-
tion and argue for a fourth category, “complicated,” which increased 
model recall. Their goal was “not necessarily to maximize accuracy. 
A model that can recall the possible interpretations is preferred 
to a model that misses them” [49, p. 1365]. Chen et al. [14] also 
introduced a fourth category, “ambiguous,” to denote situations 
where “it is unclear whether the claim and the evidence refer to the 
same context... [i.e.,] there exist multiple possible assignments or 
interpretations.” The authors refer to this as reference ambiguity— 
when the two sentences could coexist, but it is unclear—and found 
that it explained many annotator disagreements [14]. 

NLI appears in recent discussions on the future of SE, which 
propose that LLMs may be used for formal requirements analysis 
[7, 90]; e.g., Lubos et al. [65] studied how LLMs can provide quality 
feedback on requirements, while Fantechi et al. [27] analyze an 
LLM’s ability to detect inconsistencies. Importantly, Fantechi et al.’s 
method simply fed in the entire list into the LLM and asked it to 
detect conflicts; they found that LLMs could only process “short 
requirement documents” this way. They conclude that despite lower 
accuracy compared to humans, “manual detection of inconsistencies 
is more expensive,” growing quadratically with list size, “whereas 
examining [LLM] answers to distinguish true from false positives 
is a much lighter task” [27, p. 338]. Fazelnia et al. [28] also trained 
an NLI model to analyze requirements lists, and concluded that NLI 
models suffered in multi-hop conflict detection. 

To better capture dependencies among requirements, SE re-
searchers proposed ontology extraction, where a system generates 
a knowledge graph [3, 23] capturing relationships between require-
ments, a method introduced by Kaiya and Saeki [51]. For instance, 
Hsieh et al. [45] extract a domain-specific ontology by mining in-
formation from textbooks; while Dermeval et al. [23] use a web 
ontology as a visualization technique to help SWEs in writing more 
“correct,” “complete,” “consistent,” and “unambiguous” software re-
quirements. Such graph-based visualizations have also supported 
impact analysis; for instance, Wolf [30] shows the impact of pro-
posed changes via a dependency graph. This work informed our 
decision to use knowledge graphs (Section 5). 

3 Design Goals 
Here we chronicle our initial design goals for SemanticCommit, 
as well as our revised goals as the result of two pilot studies. 

We wanted to design a prototype to better understand what 
interface affordances users need to facilitate robust and trustworthy 
updates to intent specifications in a manner that 1) maintained 
their alignment with user intent and 2) kept unrelated information 
untouched. We thus went for a kitchen-sink approach: to include a 
variety of features that users may, or may not, choose to engage in, 
that seemed reasonable based on past conflict resolution interfaces, 
and observe what features users find most important and how they 
use these features in concert. Based on our review of past literature 
on conflict detection and impact analysis, we identified an initial 
set of design requirements for SemanticCommit: 
• Foresee impact: Literature on impact analysis highlights the 
importance of letting users predict the effects of a change [6, 24, 
30]. Our system should allow users’ to foresee potential down-
stream impact without actually proposing any changes. 
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• Detect conflicts: The system should assist the user in detecting 
potential conflicts or contradictions, between existing informa-
tion and the new information being introduced [26, 27]. 

• Understand conflicts: The system should provide explana-
tions to help the user understand and reason about the conflicts. 
Explanations support impact analysis sense-making [50] and 
have been shown to improve trust in intelligent systems [59]. 

• Assist conflict resolution: Like some impact analysis tools 
help users make code changes [38], our tool should help users re-
solve semantic conflicts at both global (i.e., entire document) and 
local levels. The AI should suggest possible resolution strategies, 
while leaving users free to manually edit at any time. 

• Leave non-conflicting information unchanged: Integrating 
new information should only touch pieces of information that 
are in conflict, and leave others unchanged. 

• Support local changes: Users should be able to inspect pro-
posed changes in situ and decide whether to accept, reject, or 
further revise (such as via a “diff” view). Design guidelines on 
human-AI agency and prior work also stress on giving users’ 
fine-grained control over AI suggestions [40, 56]. 

• Revert changes: Due to the stochastic nature of LLMs, and the 
complexity of semantic commit task, it is vital to provide ways 
to recover from AI failure [10, 98]. Proposed changes (edits) 
should be able to be reverted at global and local levels (i.e., to 
cancel specific revisions or back out from a wide-scale change). 

• Work at scale: To support a wide range of contexts and long-
term usage, the system should operate at scale — handling 
lengthy intent specifications without introducing latency. Users 
should not have to worry about document length. 
Note that there are other design goals which are important to 

general user interfaces for managing AI memory—such as version 
control, branching, and navigation (see Memolet [97])—but we do 
not consider them here.5 

It is critical to note that while some design goals overlap with 
document editing interfaces, a primary goal of our research is to 
produce design implications for situations where there may be no 
manual document view—e.g., situations where the user is commu-
nicating entirely through a chat UI, where the AI is managing the 
intent specification for them and may surface conflicts in a different, 
constrained manner (and decide whether, when, and how to do so). 
We intend that semantic commit will eventually be a programmatic 
API for helping developers update intent specifications that ground 
AI agent systems. Thus, we designed our interface to purposefully 
constrain editing to separate pieces of information—“memories,” 
details or rules—rather than enabling the user to perform freeform 
writing tasks (i.e., think OpenAI ChatGPT’s memory store [73], 
rather than Microsoft Word). 

3.1 Early Prototype and Pilot Feedback 
Our explorations went through substantial iterations and prompt 
prototyping over a period of eight months, evolving in response to 
two pilot studies and progressing from a card-based interface to a 
list of texts. We chronicle our early design and formative studies. 

5In particular, in real-life intent specifications like Cursor Rules, users sometimes 
group lines together; we chose a simple list to avoid complexity in our initial design. 

From our design goals, we built an initial prototype, where pieces 
of information were written on cards akin to post-its and could be 
freely moved. This interface was limited to prompting our conflict 
detection feature, and studied how users would integrated changes 
into (a chunked version of) the game design document for the 
unpublished LucasArts game Labyrinth [31]. In this early prototype, 
cards were only marked as either in conflict or not. 

We ran one pilot study with five users of our card-based interface, 
and a second with four users of a revised interface. Key takeaways: 
• The color-coding of cards marked as conflicts drew user atten-
tion sometimes entirely away from manual inspection of non-
marked cards. Possibly in reaction, all pilot users preferred 
higher recall over precision. They viewed false negatives 
(missed detections of true conflicts) as catastrophic, while false 
positives were easily handled with a quick skim. 

• When asked, participants expressed a preference for a struc-
tured, sequential document view, over the cards interface. 
One reason may be that users became fixated on sorting the 
cards, another could be that documents are more familiar.6 

• Users wanted finer-grained insight into the degree of conflict. 
Users wanted a quick visual way to understand where they 
should spend their limited attention. 

• Participants would iterate on their prompts to the conflict 
detector and resolver, in case the output did not exactly match 
their intent. It seemed less important that AI sometimes made 
mistakes, and more that they were easily fixable. 

• In post-interviews, users suggested that the degree to which 
they trusted the AI depends on their degree of investment 
in the information. If they felt invested, they would trust the 
AI less to make direct changes. 
In response, we added more design goals to our initial list: 

• Recall-first: Favor recall over precision for conflict detection. 
• List view: The system should prefer more standard document 
views, which present manageable chunks of information se-
quentially, than open-ended diagramming canvases. 

• Visualize degree: The system should help users understand 
the degree or importance of a conflict at a glance. 

• Help user recover from AI errors [71]: The system should 
support fast iteration, in case of AI mistakes, by allowing the 
user to steer the detector or resolver with a prompt. 
Based on these goals and feedback, we adjusted our interface 

and study protocol. The most important change we made was how 
strict our conflict detection retriever and filtering prompt was: we 
loosened it considerably, to enhance recall at the expense of pre-
cision. We also added a third classification, “ambiguous,” to imply 
a lesser “degree” of conflict, a decision solidified after review of 
papers in NLI [14, 49]. Ambiguous conflicts appear as a softer pink 
color to imply reduced importance, directness, or confidence that 
the information is truly in conflict.7 This prompt engineering was a 
delicate balance: too restrictive and the system tends to only rarely 
include ambiguous options; too generic and it flags almost all pieces 

6This preference seems to map to the “cursorrules”-like situations of editing Markdown 
documents, which weren’t popular at the time of our pilot.
7As we rely upon LLMs, this is not an exact science. Indeed, the aforementioned NLI 
papers also show that even with human annotators, there is little consistent reason 
why something is categorized as “ambiguous” or “complicated” [14, 49]. 
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3. Upon hover, shows 
reason for conflict 

1. User provides new 
information and clicks 

Make Change 

2. AI suggests changes to 
highly conflicting items, 
leaves others for review 

4. User clicks to perform 
a local rewrite 

5. To finalize conflict resolution, 

user manually …. resolves items 
and/or clicks Clear All Conflicts

Figure 3: Example of our SemanticCommit workflow, showing one process of integrating new information into an AI memory 
of the financial habits of a South Korean student. 1. The user has described a new piece of information and pressed Make 
Change. 2. SemanticCommit detects conflicts and suggests changes to items it deems the most conflicting, leaving other 
conflicts for human review. 3. The user hovers over conflicting items to view the AI’s reasoning. 4. For one item, they click a 
button to let the AI make a local rewrite. The user can continuing editing, manually revising, reverting suggested changes, or 
deleting items at will. 5. When they feel done, they manually resolve items and/or clear remaining conflicts with a global action. 
(Alternatively, the user could have clicked Check for Conflicts to only perform detection, then handled conflicts locally.) 

of information as potentially conflicting. We iterated on our sys-
tem decision choices with more confidence by validating changes 
against a custom evals dataset, which we discuss in Section 5. 

4 SemanticCommit User Interface 
Here we overview our final design and walkthrough examples of 
usage. Figure 1 shows our prototype, with global operations: 
• The Check for Conflicts button provides the 
ability to perform impact analysis [6], which only highlights 
potential conflicts without suggesting changes, allowing the 
user to get a sense of how much effort a change might require. 
They may choose to manually resolve each conflict, or back out 
and decide upon a different course of action. 

• The Makes Changes button performs Check for 
Conflicts then lets the AI propose a rewrite. The back-end uses 
the same procedure as check for conflicts, then performs a global 
rewrite of all detected conflicts in order to incorporate new in-
formation. Critically, the LLM can decide not to rewrite infor-
mation, even after it has been flagged (this is to avoid redundant 
changes); flagged conflicts that were not changed remain high-
lighted for human review. 

• The Add Info button allows the user to manually add a piece 
of information. 
More features are shown in Fig. 1. Local conflict resolution 

options include letting the AI rewrite, steering a rewrite, applying a 
suggested resolution strategy, reverting a change, and deleting the 
information. Global conflict resolution options complement this, 
allowing the user to steer a global rewrite via a prompt or choose 
a suggested resolution strategy. Users can also perform global 
actions to Revert All proposed changes, or Clear All Conflicts 
(putting all pieces of information back into a neutral state). Finally, 
red underlines are an experimental feature that suggests words 
which contributed the most to the conflict (in Fig. 1, “primary” is 

bold-underlined to imply that nuts are likely no longer the primary 
collectible when the player is a fox). 

The only feature missing from our figure is a “request intent 
clarification” pop-up that appears when the AI classifies a user 
request as potentially resulting in many changes (Section 4.1.3). We 
observed that high-impact changes, like changing a game’s setting 
from Mars to Venus, could incur many second-order effects and 
deserves an additional clarification round before proceeding with 
(relatively more costly) conflict detection.8 

4.1 Walkthrough of Usage 
Let’s walk through three examples of system usage in different 
domains: an investment advisor agent, updating the directives for 
an AI software engineer, and updating a game design document. 

4.1.1 Updating memory of an investment advice agent. As 
a simple example, imagine an AI agent for investment advice has 
accumulated a memory of the user, a South Korean college student, 
after many chat sessions. These include details such as financial 
goals, life events, employment history, etc. Now this user invests 
in a cryptocurrency and expresses excitement about diversifying 
more assets into crpyto. Using SemanticCommit, we add this piece 
of information to the list, and the system detects potential semantic 
conflicts which may require human review (Figure 3). A user clicks 
the “Make Change” button, which adds a new piece of information 
(deducing that it should do so, which is not always done), detects 
conflicts, then proposes changes to ensure the memory remains 
consistent with the new information. One line it proposes deleting 
entirely, another it rewrites, and others it flags for review. 

Notice how semantic conflict detection leveraged the LLM’s 
general knowledge: a mention that the user likes Warren Buffet’s 
investment strategies is highlighted as a potential conflict. Buffet, a 

8Our prompt to the AI for this step is simple and more of a prototype: here, we simply 
feed the entire context in alongside the user’s change, and ask the AI to provide a 
question if it decides the change is high-impact enough to deserve clarification. 
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Figure 4: Cursor Rules [90] adapted from the Instructor li-
brary [48], loaded into our SemanticCommit UI. The user 
has added a new directive to squash commits before pushing 
a feature branch. The system adds the new rule to the top, 
makes a revision, and flags other lines as potential conflicts. 
One change is in error, which the user can spot and revert. 

famous investor, avoids cryptocurrencies and has declared them “rat 
poison squared” [54]. Clicking the Let AI Propose Change button 
on the local information, a slight rewrite is proposed where the 
claim is softened (Step 4 in Fig. 3). 

4.1.2 Updating rules for an AI software engineer. Consider 
a user has a list of Cursor Rules, describing how an AI software 
engineering agent should behave in a code repository (Figure 4). 
(Here we use real cursor rules adapted from Instructor API’s 
open-source repository [48].) The user adds a new directive, com-
mon to software engineering practice: “To keep history linear and 
clean, always squash your commits before pushing a feature branch.” 
SemanticCommit highlights “Keep commits focused on a single 
change” in red, indicating direct conflict, and “If the feature is very 
large, create a temporary `todo.md`” in pink, indicating an ambigu-
ity. The first is unclear how to resolve: removing it seems unwise, 
but keeping it unchanged incurs confusion. The AI has also added 
a mention of squashing commits, after the line, “When being asked 
to make new features, make sure that you check out from main a 
new branch and make incremental commits.” 

4.1.3 Changing a game design document. Finally, imagine 
a game designer has a design document for a game set on Mars, 
which an AI agent implements. After some playtesting, they decide 
that Mars is overused in sci-fi narratives, and communicate that 
they want to switch the setting to Venus. Here, the AI has estimated 
that the change is significant enough to request further clarification 
from the user before continuing: 

The user provides clarification, and conflict detection proceeds. 
The AI makes the most obvious changes—changing the term “Mars” 
to “Venus,” mainly—while flagging other potential conflicts for 
review. A subtle semantic conflict, that Mars has sandstorms but 
Venus does not, is detected and changed to a more generic “storm”, 
steered by the user’s clarification: 

These examples illustrate that conflicts: a) may require general 
world-knowledge to detect, b) may be hard to resolve, and c) how 
to resolve a conflict can be a matter of creative decision-making. 
Resolving even a single change accurately is important, as unre-
solved conflicts can cascade as more changes are made. Using this 
system, we also learned why some conflicts occur—the Buffett ex-
ample above was not something we were aware of—or could be 
forced to reckon with second-order effects, such as re-thinking the 
sandstorm mechanic to better fit the planetary conditions of Venus. 

Note finally that our system does may mistakes—conflicting in-
formation can be missed, as our technical evaluation shows; conflict 
detection and retrieval are stochastic; reasoning can sometimes be 
superfluous; and in practice, some knowledge base domains can 
benefit from adding a temporal feature to information (i.e., a limited 
duration where a rule holds). However, we believed the system was 
strong enough to run a user study in order to better understand 
where further efforts should be directed. 

4.2 Implementation 
SemanticCommit is implemented in React and TypeScript, with 
a Flask Python backend for our knowledge graph-based retrieval 
architecture (described in Section 5). We iterated on prompts using 
ChainForge [5] by setting up an evaluation pipeline against our 
datasets, which allowed us to observe the effects of prompt changes 
and model choices. There are many prompt-based functions, from 
the user intent router, to conflict detection, local and global revision, 
underlining “highly conflicting” words, and suggesting resolution 
strategies. We chose GPT-4o for performance and latency reasons, 
as it performed optimally against our evals. Further details on our 
development process and system are in Supplementary Material. 

5 Back-End for Semantic Conflict Detection 
We implement a back-end system to drive the interface of Se-
manticCommit. The back-end’s primary goal is to enable conflict 
resolution at scale. During early prototyping, we found that sim-
ple methods—giving the entire context to the LLM, or generating 
string-replace operations [56]—were prone to missing conflicts. 
These techniques rely on a single prediction, which takes the entire 
memory store and produces either a rewritten version or a set of 
suggested edits. Rewriting the document frequently introduced 
superfluous changes unrelated to conflict resolution and can have 
large latency due to output size. As an alternative, we considered 
vector store retrieval from simple retrieval-augmented generation 
(RAG), but this method is known to perform sub-optimally in cases 
requiring multi-hop reasoning [25, 36], where dependencies among 
chunks are heterarchical (understanding one chunk can depend 
upon considering it alongside several others) . 
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Figure 5: Comparison of SemanticCommit using a knowledge graph with PageRank relevance assessment and then classification 
to two baselines: (i) DropAllDocs: takes all documents in context to classify them without a retrieval stage; and (ii) InkSync [56] 
implementation, reformulating the prompt to our context. The comparison is across all benchmarks in Table 1, averaged with 
st. dev. bars, for the GPT-4o and GPT-4o-mini models. Our method, kg-pagerank, achieves higher recall with similar accuracy. 

To tackle these limitations, we implement the back-end using 
a knowledge-graph (KG) RAG architecture [36] consisting of two 
phases: pre-processing and inference. The pre-processing phase 
constructs a KG by extracting entities from a collection of input doc-
uments in the memory store and linking them. Each of the entities 
keeps track of the relevant document from which it was extracted. 
The inference phase detects semantic conflicts using a multi-stage 
information retrieval (IR) pipeline. The IR pipeline takes an edit 
action (whether it is an insertion or a modification to the memory 
store) and produces a list of chunks of information in conflict. It con-
tains two stages: (i) retrieval: finds relevant chunks of information 
using the KG in a single-step to avoid error propagation. In order 
to minimize relevance assessment issues, we apply a PageRank-
based relevance ranking over the KG, akin to HippoRAG [36]; and 
(ii) conflict classification: identifies from the retrieved chunks of 
information which ones are in conflict with the edit. Based on NLI 
literature (2.1.5) and our pilot studies (3.1), our detection prompt 
includes a classification of “ambiguous” (Appendix A). 

In the rest of this section, we give an overview of our design 
considerations and their rationale through an technical evaluation. 
We highlight that our prototype back-end system, achieves higher 
recall than the simple methods with similar accuracy. 

5.1 Technical Evaluation 
Our goal is to technically validate key aspects of our design de-
cisions. We compare our end-to-end system against two simpler 
methods: (i) DropAllDocs, which adds all documents to the con-
text for conflict classification; and (ii) InkSync [56] which generates 
a JSON list of string-replace operations. These comparisons allow 
us to analyze the impact of separating conflict detection from resolu-
tion, separating retrieval from conflict classification, and evaluating 
the performance of different LLMs. 

5.1.1 Evals. To conduct our evaluation, we created four small eval-
uation datasets on three distinct domains: 
• Game Design: We use two game design documents. The first is 
from Labyrinth [31] by LucasArts (1986). The second includes 
excerpts from an original by one coauthor, describing a fictional 
game set on Mars about the first generation of children born 
there. The documents are chunked into paragraphs and referred 
to as the Labyrinth and Mars datasets, respectively. 

Benchmark Ch M CS (Min, Median, Max) 

Labyrinth 35 17 (0, 4, 10) 
Mars 30 25 (0, 2, 14) 
FinMem 30 17 (0, 4, 10) 
CursorRules 65 19 (0, 3, 25) 

Table 1: Benchmark details including number of chunks (Ch), 
number of prepared modifications (M), and conflict statistics 
(CS) (min, median, max) across modifications. 

• Financial Advice AI Agent Memory: AI agent memory in 
the style of OpenAI’s ChatGPT memories, about the investment 
strategies, financial situation, and background of a fictional col-
lege student living in South Korea (prepared by a South Korean 
coauthor). We refer to this dataset as FinMem. 

• Coding Assistant Rules: Rules for the Cursor IDE [21], which 
are intent specifications for coding assistants. A subset of the 
rules was adapted from the awesome-cursorrules GitHub repos-
itory. We refer to this as the CursorRules dataset. 

Eval domains were chosen to cover three major types of intent 
specifications from Sec. 2.1. Four coauthors created the evals, and 
two coauthors manually double-checked all conflicts, a process that 
took several days. During this inductive process, they discussed 
with two coauthors on how to classify conflicts into direct, ambigu-
ous, and non-conflicts, and adjusted classifications accordingly (see 
Appendix F for full details). 

For each of these datasets, we introduce updates as insertions or 
modifications to chunks of information, intentionally introducing 
varying numbers of conflicts. Table 1 summarizes each of the evals 
including the number of chunks, the number of updates to apply as 
part of the eval, and statistics on the number of conflicting chunks 
per update (min, max, and median). These initial evals served as 
a foundation for prototyping our approach and preparing user 
studies. 

5.1.2 Experiments and discussion. We compare our approach with 
the two baselines: DropAllDocs and InkSync. We run end-to-
end on our four eval datasets using GPT-4o and GPT-4o-mini and 
report the mean ± stddev for accuracy, precision, recall, and F1 
scores for the three approaches in Figure 5. 

Our results show that SemanticCommit achieves higher re-
call (1.6× and 2.2× higher) than DropAllDocs and InkSync, re-
spectively, while retaining similar accuracy. This better addresses 
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user preferences mentioned in our pilot studies and Related Work 
(2.1.5), reducing risk of false negatives. Additionally, our system 
matches the F1 score of DropAllDocs, outperforming InkSync by 
1.6×. While its precision is comparable to that of InkSync and 1.6× 
lower than DropAllDocs, we consider this an acceptable trade-off 
given our emphasis on maximizing recall. Note that our evals are 
rather skewed with highly targeted conflicts (on average, only a 
few ground truth items in conflict when integrating new informa-
tion), and accuracy can be misleading in such a setup, as assigning 
non-conflict to all documents would still yield high accuracy. 

Overall, InkSync performs worst likely due to its combination of 
both conflict detection and resolution in a single prediction. In con-
trast, both SemanticCommit and DropAllDocs benefit from task 
decomposition, achieving similar F1 scores. SemanticCommit’s 
additional decomposition intro retrieval and conflict classification 
enables independent optimization contributing to the higher recall. 
This decomposition proves beneficial even when it is possible to fit 
all documents into the context window, as we observe worse con-
flict classification as the false positive rate (FPR) increases. Filtering 
down the chunks of information remains preferable. 

We also ran evaluations of model latency and classification 
performance under varying false positive rates for the following 
LLMs by OpenAI: GPT-4o, GPT-4o-mini, and o3-mini. We selected 
GPT-4o for its slightly better performance, comparable latency to 
GPT-4o-mini and for being twice the speed of o3-mini. Additional 
details on FPR sensitivity and a comparison with o3-mini are pro-
vided in Appendix B of our Supplementary Material. 

6 User study 
To understand how users integrate new information in practice, we 
conducted a controlled within-subjects study with mixed methods, 
comparing SemanticCommit with a baseline interface. We had the 
following research questions: 
• Which interface affordances do users prefer (use most often) 
when performing an integration of new information? 

• How do users think through the process of integrating new 
information into an AI’s existing memory store, with regards 
to detecting and resolving potential conflicts? 

• Does SemanticCommit make users feel more in control of the 
integration process, over a more open-ended one? 

• Does SemanticCommit’s required manual review increase user 
workload compared to a more automated method? 
We compared with a baseline to better understand: 1) any inter-

face affordances our structured environment might miss, compared 
to an open-ended one; 2) how users might currently use popular 
AI-based tools to handle the process of integration, in the absence 
of targeted support. We chose OpenAI’s ChatGPT Canvas as a base-
line for five reasons: (i) it is a popular, commercially available tool, 
hence it is likely familiar to users; (ii) it provides a document editing 
view, where users can select text and ask GPT to rewrite it, or chat 
with an AI to make global edits; (iii) it employs a similar class of 
model (GPT-4o); (iv) it supports similar editing features as Seman-
ticCommit like inline text selection, conflict highlighting, and a diff 
view, while adding free-form editing; and (v) similar interfaces like 

Anthropic Artifacts tended to rewrite the specification entirely, and 
did not offer Canvas’s “diff” view to allow for a fair comparison.9 

Participants. We recruited 12 participants (7 female, 5 male) 
through the mailing lists of two research universities and one multi-
national technology company. All the participants were familiar 
with GenAI tools. Ten participants used GenAI tools daily, and the 
other two at least weekly. ChatGPT was the most commonly used 
tool, alongside others, e.g., Gemini, MS Copilot, Claude, Perplexity, 
and Deepseek. Seven participants had previously used Canvas-like 
tools, and eight had used persisting memories (or preferences) with 
AI tools. Of these eight, four participants actively manage their 
memories either by adding, editing, or deleting them. Participants 
received a $25 Amazon Gift Card as compensation. 

Tasks. We adapted two intent specifications from our evals: 
Mars Game Design Document and Financial Advice AI Agent Mem-

ory, as these tasks mapped to the two paradigmatic types covered 
in Sections 2 and 2.1 (design documents, and AI memory of the 
user). We ensured each list was 30 items long as our pilot studies 
suggested this was long enough that manual detection starts to 
become unwieldy (users need to scroll up and down the document), 
but short enough that participants could become familiar in a short 
period. For each task, participants were tasked with integrating 
three new pieces of information into the memory, one at a time 
(“sub-tasks”). We told participants to only change pieces of informa-
tion that conflict with the new information, and that otherwise they 
were free to make additions, edits, and deletions as they saw fit. One 
of our tasks directly asks users to imagine they are an information 
management system that is managing memories about the user, in 
order to mimic how automated memory management systems will 
need to be conservative in changing information. More details on 
our tasks are provided in Supplementary Material. 

Procedure. We hosted SemanticCommit online, allowing par-
ticipants to access it via their web browser. For access to Canvas, 
we provided credentials for a ChatGPT account specifically created 
for the study to control for model and feature differences. With 
participant consent, we recorded audio and screen-casts, and par-
ticipants were encouraged to think aloud. In each study session, 
the participant completed one of the two tasks each (each task 
containing 3 sub-tasks) using both the tools. Both the order of task 
assignment and tool assignment were counterbalanced and ran-
domly assigned. Before each task, participants received a tutorial 
on the assigned tool and were given five minutes to explore it using 
a test document. We also provided a summary of the task document 
and time to read through it before starting. Each condition had 
a time limit of 15 minutes, after which the participant completed 
a post-task survey. After both tasks were completed, participants 
filled out a final survey to compare the two conditions. Finally, we 
conducted an informal interview about their experience. 

Measurement and Analysis. For each task, we measured the 
success or failure of each sub-task the participant was required 
to perform. A sub-task was considered a failure if the participant 
was unable to complete it within the time limit. For condition 

9We focused on AI-assisted conditions because our ultimate goal (and anticipation) 
is that AI will keep track of user intent, especially as the intent specification grows 
lengthy and unwieldy. Even within our limited evals, we encountered how time-
consuming conflict detection can be: manually identifying conflicts for a single new 
piece of information could easily take 10 minutes, if one was being precise. 
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Figure 6: Participants’ self-reported cognitive load and pref-
erence scores that directly compare the two conditions. 

using SemanticCommit, we recorded all instances of edits, check 
for conflicts, make change, local, and global resolution actions using 
telemetry. In the post-task surveys, we collected self-reported NASA 
Task Load Index (TLX) scores, Likert-scale ratings for ease of use, 
and responses on how well the AI helped participants identify, 
understand, and resolve semantic conflicts. In the post-study survey, 
completed after both tasks, we recorded participants’ self-reported 
tool preferences and a modified NASA TLX focused on comparing 
their experiences between the two tools. For qualitative analysis, 
the first author performed open coding on participant responses and 
audio transcripts to identify themes, which were used to interpret 
the qualitative results. To measure statistical significance, we used 
Mann–Whitney–Wilcoxon tests and report the p-values. 

6.1 Findings 
6.1.1 Preferred Workflow. Participants employed distinct work-
flows with each tool. We recount three characteristic workflows of 
SemanticCommit first, then compare to user behavior in Canvas. 

Impact analysis first. Six participants (P1, P2, P4, P5, P9, P10) 
always began with Check for Conflicts, gaining insight on the im-
pact of the change before integrating any changes. Participant P2 
explained why they prefer check for conflicts by saying “I really like 
the check for conflicts action – it still gives me control, and it feels 
collaborative instead of me kind of scrolling through the whole thing 
and trying to find it [referring to Canvas ]. It highlights points of 
issues where I can plug this in.” Participant P7 explained, “I know 
where to make the edit, but I will use the global check so that I can 
find other places I might have to change”. All but one participant in 
this group proceeded exclusively with localized edits afterward. 

Immediate changes with conflict review. Five participants 
(P3, P6, P7, P11, P12) always started the task with the Make Change 
feature to see the conflicts and the potential changes at once. They 
then followed up with local changes. P3 said “This one has a lot of 
changes, so I’m going to use the global option. I’m just going to make 
change, and then figure out what to keep.” 

Skim to resolve false positives before proceeding. A method 
adopted within the two workflows, four participants (P3, P6, P9, 
P10) using SemanticCommit first quickly perused all the conflicts 

to resolve the false positives10 and then proceeded to spend time 
resolving the actual conflicts. 

In Canvas, users instead lean heavily on global rewrites. 
When using Canvas, eight participants (P1, P2, P4- P6, P10 - P12) 
predominantly utilized global prompts, instructing ChatGPT to per-
form edits throughout the entire document, while four participants 
preferred starting with global edits and subsequently performing 
local rewrites by selecting specific lines. As we recount below, this 
behavior intersected with frustrations from lack of control and the 
metacognitive demands [89] of prompting. 

Workflow choice can depend on context. When asking par-
ticipants how they pick between local vs. global resolution, they 
gave two major reasons—complexity of change and familiarity with 
the document. For example, P9 mentioned they would use global 
resolution techniques when they perceive the impact is higher— 
“There is a lot of information here, it is much harder to go through 
it one by one. So I wanted to check for all the conflicts with the doc 
and then change it [collectively].” The choice also depends on how 
familiar they are with the contents of the document. P12 said “And 
I’m gonna go to [SemanticCommit] and put this as a global change. 
And I’m gonna say, first check for conflicts before making a change 
because I haven’t read the complete document thoroughly.” 

6.1.2 Improved ability to catch semantic conflicts. Nine par-
ticipants (P1 - P4, P7, P8, P10 - P12) explicitly stated that Semantic-
Commit was better at identifying conflicts compared to Canvas. 
In the post-study survey ranking, participants additionally report 
a higher level of task success with SemanticCommit compared 
to Canvas (𝜇=2.42; 𝜎=1.5, where 1 indicates full preference for 
SemanticCommit), higher levels of success in identifying seman-

tic conflicts (𝜇=2.08; 𝜎=1.5) and in understanding semantic conflicts 
(𝜇=2.25; 𝜎=1.95). As P4 noted “It feels like you can identify inconsis-
tencies easier in [SemanticCommit], which is what I liked a lot. So I 
favor that more. I’d feel I’d be a lot faster at getting work done.” 

This preference stemmed from two primary reasons. First, six 
participants (P2, P3, P4, P8, P11, P12) explicitly mentioned that 
when using SemanticCommit, the granularity of information and 
the red-colored highlights enabled easy conflict identification. P12 
explained this in terms of context for the AI by saying “I think the 
[SemanticCommit] tool is great in finding conflict, that’s because it 
discretizes information, it’s much more granular. It doesn’t club all 
the context together.” Second, except P2, all the other participants 
heavily relied on the rationale provided by SemanticCommit when 
understand why a conflict occurred. P8 explained this by saying 
“With [SemanticCommit]... there is stronger explanation provided as 
to why that conflict is occurring.” 

Inconsistent conflict detection in Canvas leads to frustra-
tion and flailing. In contrast, nine participants (P1 - P3, P5 - P9, 
P11) noted that Canvas often missed conflicts or failed to under-
stand the changes they wanted to make. Across 18 cases involving 
10 participants (P1, P2, P3–P7, P9–P12), Canvas failed to detect even 
a single conflict during the task. In 9 of these cases, participants 
accepted the results without further checks; in the others, they 
had to either manually spot the issues or retry with more specific 
prompts. We highlight some of the observations below. 

10Participants considered “false positives” as the conflicts flagged by the system that, 
in their subjective judgment, did not require meaningful intervention. 
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Figure 7: Participants using SemanticCommit made signifi-
cantly more edits and intervened edits compared to Canvas. 

In one instance, P5 had explicitly asked Canvas to find conflicts 
in the document. When the tool failed, the participant manually 
pointed out a conflict by quoting the text, and the AI model came 
up with a convoluted reason as to why it was not a conflict. P5 
retorted by saying “It is giving me an excuse.” In a different task, 
P5 exclaimed “Looks like it just added one statement, and there is no 
conflict. [5 seconds later] Oh wait! the GameBoy aesthetics is conflict-
ing”—catching a false negative manually in real time. In another 
instance, P9 prompted the Canvas tool three times to identify con-
flicts and make a change, but each attempt failed. Frustrated, they 
exclaimed, “It didn’t change it the way that I wanted. Maybe I’ll delete 
this and do it myself and specify what I want to be changed” before 
proceeding to manually make the change. 

There were eight instances with six participants (P1, P2, P5, P7, 
P11, P12), where Canvas drastically changed the contents of the 
document either by replacing all the contents or by making heavy 
modifications. We then instructed the participants to restore to a 
previous version using version history. 

6.1.3 Greater sense of control with SemanticCommit. A re-
curring theme among participants was the strong sense of control 
they felt while using SemanticCommit. Nine participants (P2, P3, 
P4, P6, P7, P8, P10, P11, P12) explicitly mentioned that Semantic-
Commit offered them more control over the integration process 
compared to Canvas. In the post-study survey ranking, participants 
additionally report a higher level of control with SemanticCommit 
compared to Canvas (𝜇=2.08; 𝜎=1.36, where 1 indicates full pref-
erence for SemanticCommit), as well as a higher level of success 
in resolving semantic conflicts (𝜇=2.17; 𝜎=1.34). This perception of 
control emerged due to several reasons mentioned below. 

Granular insights into conflicts: Six participants (P2, P3, P4, 
P8, P11, P12) emphasized that the fine-grained presentation of infor-
mation in SemanticCommit made it easier to identify, understand, 
and resolve conflicts—particularly for localized edits. The piece-by-
piece breakdown gave users a clear sense of what was being altered 
and why. As P11 explained, “you have some concept of a line—every 
element is aligned, so you probably have more granularity to control 
the elements that are being changed. That was really nice... I never 
had to worry that the entire document is going to get changed here and 
there.” This precision allowed participants to maintain a stronger 
grasp over editing and focus their attention where it mattered. 

Conflict reasoning encourages critical reflection: The tool’s 
detailed breakdown of conflicts and its reasoning behind proposed 
changes encouraged users to think more critically about edits. P12 
described how this led them to re-evaluate parts of the content they 
might have otherwise overlooked: “So yeah, [SemanticCommit] 
improved the conflict finding even more... there were some parts in 
the document I would have ignored if I was doing it on my own. I 
wouldn’t have considered some graphic design aspects of the game, 
but [SemanticCommit] provided its reason on why it has raised 
this as a conflict made me reconsider my decision. I like that part, 
because I would have easily ignored it, and that would have led to 
more iterations with more discussions.” 

Forced review enhanced sense of control over process: An-
other factor that reinforced a sense of control was the editing work-
flow itself. Unlike Canvas, which applied changes automatically, 
SemanticCommit required users to first review conflicts, make 
changes, and then manually click the resolve button to validate 
them. This structure helped participants feel like they were direct-
ing the process. As P10 observed, “In [SemanticCommit] it was a 
step by step process to see the conflict, before making any changes 
whereas in [Canvas] there was no decision making on my behalf 
and it did the changes all by itself whether I agree with it or not.” 
Similarly, P4 noted, “Making changes [with SemanticCommit] was 
my favorite, because it walks you through every line, highlighting 
recommendations like revise, delete, change, add, or nothing.” 

This workflow—of reviewing conflicts, followed by local and/or 
global resolution—also could make the task feel more collaborative. 
Three participants (P1, P2, P5) described the process with Semantic-
Commit as collaborating with AI. P2 said “With [SemanticCommit] 
you could ask it to look for conflicts. So you’re sort of partnering like 
it would get the conflicts for you, and then you would move through 
them systematically... I felt like with [Canvas], you didn’t have that 
middle ground. It was either make the change or don’t.” 

Loss of control breeds insecurity. Due to Canvas not identi-
fying conflicts and understanding instructions from participants, 
combined with sudden and drastic changes to the document, eight 
participants (P1-P6, P10, P11) explicitly mentioned they have doubts 
and insecurity when using Canvas to make any changes to a docu-
ment. P2 said “Using [Canvas] was really uncertain. You know, you 
just kind of felt like you’re guessing, and you didn’t know what was 
gonna happen.” P6 also explained this by saying “The downside of 
[Canvas] will be you just take it as it is, so you may not notice there’s 
a part that should or shouldn’t be changed. You may just skip it, pass 
it, and never notice the mistake the AI tool made.” 

Responsive UI with many local resolution options: Partici-
pants also appreciated the responsive nature of the interface during 
local resolution. As P11 described, “The [SemanticCommit] tool I 
found quite intuitive, especially with the responsive nature where you 
put your mouse on it and there’s a color code, and there’s a green 
resolve button. The right-hand side gives you options to revise, reject, 
delete, edit, or suggest a new revision, etc. That is really good.” 

Ease of local reversibility: Like diff interfaces, participants also 
valued the ability to manually review changes and locally undo or 
dismiss them. P11 noted the friction in Canvas ’s reversal process: 
“With [Canvas], if you want to reject changes, then you probably 
have to undo and restore to the previous version, which seems a little 
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cumbersome. It’s not as simple as in [SemanticCommit] where you 
could accept a change or reject right there in that line.” 

Tradeoffs between control and efficiency: While many ap-
preciated the explicit approval mechanisms in SemanticCommit, 
a few also noted potential tradeoffs. P3 acknowledged that the con-
firmation steps could feel excessive in low-conflict scenarios: “I 
think sometimes it was overkill, if there were a pretty low number 
of conflicts detected. But otherwise, I think it was nice to confirm.” 
P12 framed this as a tension between control and usability: “I think 
it’s important to do if you want finer control, but it really depends 
on the application you want to package it as. If you want better user 
experience, and you do not want them to spend more time, you would 
have to give them less control.” 

6.1.4 Perceived cognitive load. In the post-study survey, par-
ticipants’ preferences were measured using a 7-point Likert scale, 
where 1 indicated a strong preference for SemanticCommit and 
7 indicated a strong preference for Canvas. Participants reported 
slightly higher levels of mental demand (𝜇=4.67; 𝜎=1.56), hurry 
(𝜇=4.75; 𝜎=1.14), and perceived effort (𝜇=4.5; 𝜎=1.62) when using 
Canvas compared to SemanticCommit. They also reported slightly 
greater feelings of annoyance (𝜇=5; 𝜎=1.2) with Canvas. 

However, when comparing post-task questionnaires, we ob-
served no statistically significant difference between conditions 
regarding mental demand, sense of hurriedness or frustration, ef-
fort exerted, or perception of success (all p-values are 0.45 and 
above). This null result was surprising to us, as we had expected 
higher workload in the SemanticCommit condition due to the 
increased demand as users manually click to resolve conflicts. 

6.1.5 Task time and completion rates. On average, participants 
took 4 minutes and 7 seconds (𝜎= 117 seconds) to complete tasks 
using the control tool compared to 5 minutes and 41 seconds (𝜎= 123 
seconds) using the experimental tool. This difference is statistically 
significant (𝑝≈0.004). It is important to note that task completion 
time does not capture task performance, as tasks encouraged par-
ticipants to spend additional time holistically integrating document 
changes. We observed no significant difference in task completion 
rates between the two conditions. Four participants failed to com-
plete one sub-task with Canvas compared to five participants with 
SemanticCommit, with all failures attributed to insufficient time. 

6.1.6 Participants made significantly more edits when us-
ing SemanticCommit. Measuring participant engagement in con-
trolled lab studies is challenging. Counting edits—with more edits 
typically indicating higher engagement—is useful, but AI tools can 
easily automate extensive editing, reducing reliability of metrics. 7.1 Implications 
To address this, in addition to studying number of edits overall 
(human- or AI-made), we also studied intervened edits—edits ex-
plicitly triggered by participants one at a time, whether manual or 
with AI. These metrics give a more comprehensive picture. 

Participants using SemanticCommit demonstrated significantly 
higher engagement across both measures. They made an aver-
age of 5.83 edits (𝜎=3.21), compared to 3.5 edits with control 
(𝜎=2.85; 𝑝≈0.001). This contrast was even stronger for intervened 
edits, where participants using SemanticCommit averaged 4 edits 
(𝜎=1.94) per task, while participants using Canvas averaged just 

0.65 (𝜎 = 1; 𝑝<0.001; Figure 7). Finally, when using SemanticCom-
mit, participants made an average of 2.93 localized edits per task, 
significantly (𝑝<0.001) higher than an average of 0.28 localized 
edits per task when using Canvas. Participants extensively used 
the different kinds of local resolution strategies such as revise, add, 
and delete suggested by SemanticCommit. These differences high-
light the participants’ willingness to make more edits when using 
SemanticCommit. This also helps explain the higher average task 
completion time presented earlier—showing participants invested 
more time in understanding and making more deliberate changes. 

6.1.7 Participant trust and over-reliance. Trust emerged as a 
complex and sometimes contradictory theme in how participants 
interacted with the AI tools. While many participants expressed 
skepticism toward AI-generated changes, their actual behavior 
revealed moments of over-reliance—particularly when changes 
appeared seamless or were not flagged as conflicts by the tool. 

A majority of participants (P3, P4, P6, P7, P8, P10, P11, P12) ex-
plicitly stated that they did not trust the AI to make changes without 
their manual verification. As P10 firmly noted, “No, I don’t trust any 
AI blindly to make full and final changes to the result accurately. I 
always verify manually to spot any mistakes or misinterpretations by 
AI.” This sentiment reflects a baseline level of caution we expected 
the participants to carry throughout the tasks. When comparing 
the two tools, six participants (P1, P2, P5, P6, P11, P12) explicitly 
reported greater trust in SemanticCommit over Canvas. They 
cited better contextual understanding and more transparency in 
the editing process as reasons for this preference. For example, P2 
said, “With [Canvas] I was very skeptical. I don’t think I would trust it 
without doing a full read myself. With [SemanticCommit], I trusted 
it more. I felt like it seemed to understand the context better. But no 
matter the tool, I need to make sure that everything was good, so I 
would still read it over again.” 

Despite these widespread claims of skepticism, however, partic-
ipants occasionally over-relied on both tools. As noted earlier, in 
nine instances where Canvas failed to identify any conflicts, partic-
ipants accepted the output without further review. A similar pattern 
emerged with SemanticCommit: five participants skipped review-
ing parts of the document that were not flagged as conflicting. This 
points to a potentially risky dependency on the AI and underscores 
our decision to improve recall at the expense of precision—if the 
model fails to detect a conflict (false negatives), users may miss 
critical issues simply because they trust the system’s silence. 

7 Discussion 

7.1.1 AI Agent Interfaces Should Help Users Perform Impact 
Analysis. Our findings contribute to growing line of HCI research 
that emphasizes proactivity, presence, and just-in-time steering in 
AI agents acting on user’s behalf [15, 52, 53, 67, 77, 82, 88]. The most 
surprising finding was participants’ preference for performing im-

pact analysis: finding conflicts first before making any edits. Instead 
of automatically applying changes and prompting users to verify 
afterward (like Canvas), this suggests AI agent systems should 
encourage users to first understand the impact of the change and 
only then choose to explicitly suggest and/or trigger changes. Our 
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findings indicate higher trust and satisfaction when users actively 
initiate changes, reducing uncertainty and increasing perceived 
control. Surprisingly, the benefits from increased control seem 
to offset the cost of AI output validation, as our results on 
perceived workload suggest. Not all users will use impact analysis 
in every context, but highlighting what aspects of an artifact will 
be considered and/or modified can help enhance user trust and 
control, especially in high-stakes situations. 

This bears important implications for current AI agent inter-
faces, which tend to first let the AI make changes, and then have 
users validate them. For instance, in AI-powered programming 
IDEs like Cursor and Visual Studio, the agent makes changes across 
documents and then presents the revisions for human review. In-
stead, our findings call upon designers of AI agent systems to 
provide affordances for impact analysis: helping users fore-
see the impact or location of AI changes, before necessarily 
suggesting concrete changes. This reflects the principle of feed-
forward [67, 93] in communication theory—“a needed prescription 
or plan for a feedback, to which the actual feedback may or may 
not confirm” [79]—where a communicator provides “the context of 
what one was planning to talk about” [64, p. 179-80] in order to 
“pre-test the impact of [its output]” on the listener [34, p. 65]. This 
returns control to the user and explicitly separates retrieval and 
generation, steps which are currently conflated in many agent inter-
faces. Such an affordance might also address a growing pain-point 
where unrelated data are deleted without approval.11 

Note that impact analysis is not simply about pausing before 
enacting a change. It is also about weighing how extensive a change 
might be, the work required, and unintended side-effects. Users can 
use impact analysis to back out of an in-progress change, before the 
damage is done or they are overloaded by AI slop—an AI resilient [33, 
35] affordance that helps users preemptively judge and respond to 
AI decisions. The reflective nature of impact analysis could also 
help users better understand potential conflicts, even inspire new 
ideas and areas for improvement. 

7.1.2 Let the User Walk the Spectrum of Control. When de-
signing mixed-initiative systems [43] where the users and AI col-
laborate, there is a trade-off between control (retaining it due to 
distrust in AI) and efficiency (completely delegating). Semantic-
Commit’s affordances for adjustable autonomy [12], or blended 
agency [82], enabled the user to dynamically select their preferred 
balance between automation and manual oversight depending on 
the context, complexity of tasks, trust in the AI, or familiarity with 
the content, whereas users experienced loss of agency in the base-
line condition. This suggests that AI agent interfaces should offer 
both highly controlled (step-by-step approvals like local resolution 
in SemanticCommit) and streamlined (global changes) workflows 
to adapt to varying user needs. Our participants appreciated de-
tailed explanations about identified conflicts and recommended 
resolutions, which empowered them to make informed decisions. 
Transparency also appeared to reduce anxiety and frustration, pro-
moting critical evaluation rather than passive acceptance. 

11There are many examples of this, from forums (https://news.ycombinator.com/item? 
id=43298275) to memes (https://x.com/daniel_nguyenx/status/1909184057755496571). 

7.1.3 Start Global, Then Accelerate Local Review. We imple-
mented a range of elements into SemanticCommit, not knowing 
what users would prefer. We found that though users started glob-
ally, they preferred to then make local edits, and liberally used a 
range of local options—local steering, AI rewrites, etc—rather than 
global steering prompts and global resolution strategies. In the base-
line Canvas condition, it was the exact opposite: users appeared 
resigned to global steering in chat and became frustrated by lack of 
granular control. This suggests future interfaces for semantic 
conflict resolution should better support and accelerate local 
review, rather than focusing on features for global steering after 
the initial interaction. The workflow of 4 participants to first dis-
miss false positives, and only then focus on handling conflicts, was 
also telling. Interfaces might explore explicitly separating stages of 
“double-checking” AI outputs versus resolving. 

7.2 Limitations 
Our comparison to ChatGPT Canvas yields an informative, “best-
available” contrast, but Canvas differs from SemanticCommit in 
two directions: it lets users perform arbitrary free-form edits, yet it 
lacks SC’s structured memory pane. These mismatches could inflate 
or deflate measured advantages. Our within-subjects study is also 
subject to demand characteristics [47]. Although we counterbal-
anced order, familiarity effects or social desirability bias could still 
surface. Seven participants also had previous Canvas experience, 
which might bias them to trust or prefer that interface. We there-
fore interpret subjective preference data cautiously and emphasize 
differences in observed workflows in our conclusions. 

Another limitation is our treatment of AI memories as a list 
of unweighted facts. Emerging LLM frameworks can attach meta-
data such as model confidence, provenance, or temporal scope. 
Future iterations of SemanticCommit might consider color gradi-
ents computed from confidence deltas, yielding a continuous rather 
than three-band classification, and resolution suggestions could be 
ranked by expected reduction in global uncertainty. 

7.3 Future Work and Connections 
7.3.1 Interfaces and APIs for management of AI memory 
of user intent. We mentioned earlier that our intention is for Se-
manticCommit to become an API that helps users make “semantic 
commits”: committing ideas and details to projects like we commit 
code, where the integration work is assisted by AI. Our UI was 
mainly a vehicle to see what users would do, were they given full 
control over the integration process. Left to their own devices to 
prompt chat models, our findings show that users are prone to miss 
conflicts or accept unwarranted rewrites of entire memory stores. 
Developers who utilize these simple one-shot prompting methods 
will be prone to similar failure modes. Tools like Claude Code pro-
vide users quick command-line directives to update memory, but 
simply append the directive to the end of the intent specification [2]. 

What would a more assistive command-line interface for memory 
updates look like? Could we automatically surface the conflicts that 
users care about, anticipating and correcting misalignments before 
they happen—potentially saving thousands of wasted inference 
calls? As AI agent systems grow in popularity, it becomes critical 
to explore interfaces and APIs that help users and developers alike 

https://news.ycombinator.com/item?id=43298275
https://news.ycombinator.com/item?id=43298275
https://x.com/daniel_nguyenx/status/1909184057755496571
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manage, inspect, and update AI memory of user intent in a manner 
that is non-destructive, transparent, and controllable. 

The hard question is what to do when we do not have the luxury 
of a graphical UI—when intent integration is an API, part of a 
larger system. When and how to raise conflicts for user review? 
What rises to the level of “direct conflict” that must be addressed, 
versus an ambiguity that the AI could still proceed under? This 
goes back to our initial discussion on NLI and ambiguity, where 
human annotators had subjective differences in resolving conflicts 
[14, 49]—in many cases, these differences emerged from humans 
holding different frames of reference. To align conflict detection to 
specific users, we might consider two mechanisms—first, grounding 
acts like request for clarification [83, 85], triggered contextually. 
Vaithilingham et al. [92] suggest that the benefits of negotiation 
increase with the level of abstraction: AI agents should engage 
users in discussion for high-impact decisions, while avoiding it 
for low-impact ones. Second, a more passive mechanism might 
use memories to help model a particular user’s classification of 
“conflict,” aligning it over repeated interactions [84, 87]. Future 
research could investigate how to align conflict detectors to specific 
humans’ ontological understanding of conflicts in their task domain. References 
7.3.2 Cognitive forcing functions to mitigate over-reliance. 
A line of research argues that to mitigate the risk of users becoming 
complacent or overly reliant on AI, systems should incorporate 
cognitive forcing functions [13, 22] —interface mechanisms that de-
liberately encourage active user involvement. In SemanticCommit, 
we do this by requiring explicit user approval when a conflict is 
detected or a change is made by the AI. Such mechanisms foster sus-
tained cognitive engagement and reduce the likelihood of critical 
oversights resulting from blind trust in AI-generated outputs. 

However, mitigation of over-reliance is not elimination. Our 
work reflects the tension between automation and agency [40, 82], 
embodied by our efforts to enhance recall to reduce false negatives. 
Drawing user attention to conflicts—even “ambiguous conflicts”— 
shows that users are liable to over-rely upon the AI to the extent of 
not checking any non-marked information. One further mitigation 
may be to mirror the kinds of divergences human annotators face 
when detecting conflicts [14, 49] by querying multiple LLMs in 
parallel and adopting a majority voting or ensembling scheme [91]. 
The “degree” of conflict might then correlate with consistency and 
number of votes, and divergences in LLM judges could be visualized. 

7.3.3 Interfaces to support requirements-oriented prompt-

ing. Ma et al. [66] introduced a process for prompting AI agents 
that focuses on supporting users in creating a good initial set of 
requirements. They argue that in the age of “requirements-oriented” 
prompting, HCI will need to focus on training users to be good 
requirements engineers. Although not entirely focused on require-
ments lists, our interface can help users update requirements to 
reduce conflicts, inconsistencies, and ambiguities. Future studies 
might explicitly study the performance of an AI agent following 
the user’s intentions after changes are made. 

7.3.4 Semantic commits for long-form writing. One of the 
impetuses for this work was inspired by the challenges a coauthor 
faced when performing developmental editing for a long fiction 
novel. Developmental editing [72] assesses the overall content and 

structure of a document with regards to consistency, plot, and flow. 
Changed or removed scenes, even one-off conversations, could 
have impacts much later in a novel, and an author must keep all 
of this information in their head or manually reread to detect in-
consistencies. A review by Zhao et al. [102] found that little HCI 
research focused on helping writers perform developmental editing. 
In the future, NLI-like AI-powered interfaces might help writers of 
long documents detect and resolve inconsistencies that emerge as a 
result of revisions. Much like Portrayal [42] shows writers birds-eye 
views of characters across a novel, might a similar interface help 
users to visualize “plot holes”? Our work suggests these semantic 
commit interfaces should heavily prioritize recall over precision, as 
a missed conflict across a 100k+ word novel may be catastrophic, 
compared to lightly reviewing false positives. 
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