
Semantic Commit: Helping Users Update Intent Specifications for
AI Memory at Scale

Priyan Vaithilingam
SEAS

Harvard University
Cambridge, Massachusetts, USA
pvaithilingam@g.harvard.edu

Munyeong Kim
Montréal HCI

Université de Montréal
Montréal, Quebec, Canada

kim.munyeong@umontreal.ca

Frida-Cecilia Acosta-Parenteau
Université de Montréal

Montréal, Quebec, Canada
frida-cecilia.acosta-

parenteau@umontreal.ca

Daniel Lee
Adobe Inc.

San Jose, California, USA
dlee1@adobe.com

Amine Mhedhbi
Polytechnique Montréal
Montréal, Quebec, Canada
amine.mhedhbi@polymtl.ca

Elena L. Glassman
SEAS

Harvard University
Cambridge, Massachusetts, USA
glassman@seas.harvard.edu

Ian Arawjo
Montréal HCI

Université de Montréal
Montréal, Quebec, Canada
ian.arawjo@umontreal.ca

Local conflict
resolution options

Detect conflicts & let AI
propose global changes

Detect conflicts & flag
for human review

Add the information
without detection

Potential conflicts, with
color suggesting degree

Pink = ambiguous
Red = requires attention

A proposed change, requires
human verification with .

AI reasoning why there
might be a conflict

Local resolution
strategies (user can

also steer an edit)

Let AI propose rewrite

Revert proposed change

Delete this info

Global conflict detection
and resolution options

User describes
their intent

Document view, listing pieces of information
from a memory store or intent specification

Global resolution
strategies (user can

also steer an edit)

Global controls:
Revert all proposed
changes, or clear all

highlighted conflits

Figure 1: Our SemanticCommit interface, providing users myriad ways to detect and resolve conflicts at global and local levels.
Our prototype was used as a probe to better understand the needs of users for integrating new information into lists of prior
information akin to AI agent memory or requirements lists. The screenshot depicts a short list describing a “Squirrel Game,”
where the user is integrating a new feature. Potential conflicts are highlighted in red and pink to mark degree, and the AI has
added a new piece of information to the store and proposed an edit to another piece, both marked for human verification.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
UIST ’25, Busan, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2037-6/25/09
https://doi.org/10.1145/3746059.3747778

Abstract
As AI agents increasingly rely on memory systems to align with
user intent, updating these memories presents challenges of
semantic conflict and ambiguity. Inspired by impact analysis in
software engineering, we introduce SemanticCommit, a mixed-
initiative interface to help users integrate new intent into intent

https://orcid.org/0000-0001-6730-5683
https://orcid.org/0009-0004-4113-3747
https://orcid.org/0009-0000-5313-5468
https://orcid.org/0009-0005-3061-1827
https://orcid.org/0009-0000-9342-5144
https://orcid.org/0000-0001-5178-3496
https://orcid.org/0000-0001-8910-0822
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3746059.3747778
mailto:glassman@seas.harvard.edu
https://parenteau@umontreal.ca
https://ian.arawjo@umontreal.ca
https://amine.mhedhbi@polymtl.ca
https://kim.munyeong@umontreal.ca
mailto:dlee1@adobe.com
mailto:pvaithilingam@g.harvard.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746059.3747778&domain=pdf&date_stamp=2025-09-27

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

specifications—natural language documents like AI memory lists,
Cursor Rules, and game design documents—while maintaining
consistency. SemanticCommit detects potential semantic conflicts
using a knowledge graph-based retrieval-augmented generation
pipeline, and assists users in resolving them with LLM support.
Through a within-subjects study with 12 participants comparing
SemanticCommit to a chat-with-document baseline (OpenAI
Canvas), we find differences in workflow: half of our participants
adopted a workflow of impact analysis when using SemanticCom-
mit, where they would first flag conflicts without AI revisions
then resolve conflicts locally, despite having access to a global
revision feature. Additionally, users felt SemanticCommit offered
a greater sense of control without increasing workload. Our
findings indicate that AI agent interfaces should help users validate
AI retrieval independently from generation, suggesting that the
benefits from improved control can offset the costs of manual
review. Our work speaks to the need for AI system designers to
think about updating memory as a process that involves human
feedback and decision-making.

CCS Concepts
• Computing methodologies → Intelligent agents; • Human-
centered computing → Natural language interfaces; User studies;
• Software and its engineering → Requirements analysis; •
Information systems → Information integration.

Keywords
memory management, AI agents, large language models, impact
analysis, human-AI grounding, intent specification

ACM Reference Format:
Priyan Vaithilingam, Munyeong Kim, Frida-Cecilia Acosta-Parenteau,
Daniel Lee, Amine Mhedhbi, Elena L. Glassman, and Ian Arawjo. 2025.
Semantic Commit: Helping Users Update Intent Specifications for AI Mem-
ory at Scale. In The 38th Annual ACM Symposium on User Interface Software
and Technology (UIST ’25), September 28–October 01, 2025, Busan, Republic of
Korea. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3746059.
3747778

1 Introduction
In the near-future, people may coordinate with AI agent systems
through project-specific documents that represent accumulations
of user intent [66, 92, 100]—lists that we call intent specifications.
These human-readable accumulations of design requirements, user
goals and preferences reify common ground [8, 19, 92] between
humans and AI systems, grounding AI decision-making by keeping
track of details and goals, surfacing implicit assumptions made by
AI, and acting as a intermediate representation of an AI system’s
‘understanding’ which the user can inspect and edit (Figure 2).

We dream of a world in which people can make semantic com-
mits: committing ideas and details to projects like they commit
code, and dealing with the “merge conflicts” that may occur. One key
challenge standing in the way of this paradigm shift is integration:
how to responsibly and verifiably integrate new information into a
repository of natural language [92], e.g., to update an AI agent’s
memory of user intent in a reviewable, concise, and accurate man-
ner, such that the memory remains aligned. How can technology

assist with the integration of a new piece of information into an
existing repository at scale (e.g., a design document, a requirements
list, documentation, a wiki, novel, etc.)? The new information may
conflict with prior information—something may become incon-
sistent or contradictory. Changing existing information can incur
the same effect. We frame this challenge for the community as
semantic conflict detection and semantic conflict resolution,
since it operates at the level of semantics and concepts, unlike past
techniques that operate on pre-defined structure and syntax.

Over brief time-frames and short documents, simple methods—
such as using LLMs to regenerate entire documents or apply string
replace operations [56]—can perform edits, but as humans interact
with agents over long time-frames and complex projects, these
methods cease to function at scale. Simple vector store architectures,
seen in retrieval-augmented generation (RAG), also face challenges,
since detecting semantic conflicts frequently requires multi-hop
reasoning, a well-known failure mode [25, 36]. How to resolve a
conflict is also often subjective [14, 49], and therefore a problem
for HCI, as for example, particular conflict resolutions may incur
cascades where solving one problem creates another. Systems thus
need ways not only of identifying conflicts and inconsistencies
efficiently and accurately at scale, but of interactively assisting users
in conflict resolution in a way that a) helps users reflect and b) foresee
the impact of changes, c) only makes the necessary changes without
touching other information, and d) minimizes user effort while
maximizing changes’ alignment with user intent. Downstream AI
systems could use conflict detection results to, e.g., decide whether
to perform grounding acts [83, 85] such as request for clarification.

To help researchers better understand the problem of updating
AI memory of user intent in an aligned manner, in this paper, we
provide several contributions to the literature. We:
(1) Define the term intent specification to name grounding doc-

uments that coordinate with AI agents, such as user-defined
“memory” lists for Claude Code [2].

(2) Provide design goals for AI-assisted interfaces for semantic
conflict detection and resolution, inspired by related literature
such as impact analysis in software engineering.

(3) Develop an interface, SemanticCommit, iterating its design
over two pilot studies. Our system implements a range of af-
fordances for conflict detection and resolution and is intended
as a probe of user behavior.

(4) Introduce an architecture for semantic conflict detection at
scale. Our approach uses induced knowledge graphs, adapt-
ing emerging architecture in retrieval-augmented generation
(RAG) [36]. To test and compare our approach to prior ap-
proaches in the literature, we also provide an initial evaluation
dataset (“evals” [87]) across three domains.

(5) Provide empirical insights from a within-subjects user study,
examining how users detect, understand, and resolve conflicts
when updating intent specifications for AI memory, comparing
SemanticCommit to OpenAI’s ChatGPT Canvas.

Our findings suggest that AI agent interfaces should enable
users to perform impact analysis, separating retrieval from
generation—steps that are currently conflated in many AI-powered
software engineering IDEs. Surprisingly, although users appeared
more engaged when using SemanticCommit, they did not report

https://doi.org/10.1145/3746059.3747778
https://doi.org/10.1145/3746059.3747778

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Figure 2: A high-level depiction of our envisioned interaction
between humans and AI assistants for long-term projects.
The human-readable intent specification serves as an inter-
mediate layer for enhancing common ground between the
human and the AI, and grounds the AI’s decision-making.
We assume future AI agents will have a similar intent spec-
ification layer. Our project squarely concerns how the AI
updates this memory in a robust, verifiable manner, and in
the process might surface conflicts to the user to get their
feedback in resolving them.

significantly higher workload than the more automated Canvas UI.
This suggests that the benefits of improved control can offset
the cost of manual review, possibly by shifting user workload
away from metacognitive demands [89] that users face when
prompting in open-ended chat, towards the demands of the actual
task, such as reviewing conflicts.

2 Motivation: Intent Specifications Ground
Human Coordination with AI Agents

Humans are increasingly managing and validating the outputs of
AI systems that implement entire software systems like games,
websites, and apps. To reduce risk and align AI decision-making
in user preferences, human-readable documents are emerging as a
mechanism to create and maintain common ground [19] between
humans and AI systems acting on their behalf [86].

Numerous examples are emerging of this interaction paradigm.
The AI-powered programming IDE Cursor, for instance, can ground
its behavior in user-made “cursor rules”—markdown documents
that AIs read to ground their behavior in user preferences—at both
project-specific and global levels [21].1 Rules range from sweep-
ing commands, like “never use apologies,” to the highly particular,
like “use vectorized operations in pandas and numpy for improved
performance.” Users develop these rules over time across many
interactions. Anthropic has also adopted this paradigm: with the
Claude Code agent, users create CLAUDE.md files listing project- and
global-level directives; Anthropic’s own “memory best practices”

1People have started crowd-source these rules: the “Awesome CursorRules” repository
and CursorList.com include hundreds of rules lists, contributed by everyday users,
indexed by programming language, libraries, and use cases. See, e.g., https://github.
com/PatrickJS/awesome-cursorrules.

tell users to format memories as “bullet points” and reminds them
to manually “update memories as your project evolves” [2]. These
“memories” help Claude Code “remember project conventions, ar-
chitecture decisions, or coding standards that we want to reference
across sessions” [96]. Not to be outdone, the CEO of Windsurf—a
competitor to Cursor—just announced a yet-to-be-implemented
“auto-generated memories” feature where these memories of user
intent are automatically updated by an AI, which will inevitably
encounter the very challenges we discuss here.2

Everyday users are also increasingly coordinating with AI sys-
tems through lists of requirements expressed in natural language.
For instance, users are generating games from specs that resemble
lists of software requirements. Here is an excerpt from a real user,3

to give readers a sense of how these rules appear in practice:
• The dog barks when the player clicks or taps on the screen,
making the sheep move faster

• Sheep should react realistically to the dog’s presence
• When frightened, the flock should scatter
This user’s example, which in total has 27 requirements, is only

the start of an interaction with an AI agent. As the user interacts
and projects grow in complexity, future AI systems will need to
assist in the extension and updating of these rules and details.

We call these lists—cursorrules, CLAUDE.md files, user directives,
AI memory of user intent, etc.—intent specifications, adapting
and broadening the notion of requirement specifications in software
engineering.4 Intent specifications are evolving, comprehensible
documents of user intent that ground AI decision-making and
reify common ground between humans and AI systems. We in-
troduce intent specification to underscore that such documents may
not only cover design details or software requirements, but how the
AI should communicate to the user, who the user is, the user’s goals
and dreams, etc. Said differently, an intent specification is not only
a description of user intent, but may also include information that
helps an AI agent assume user intent—i.e., background, assumed
preferences—accelerating the establishment of common ground.
However, unlike a general memory store—which could be an ex-
tensive collection of all interactions—intent specifications’ purpose
is to be reviewable, comprehensible and digestible, to be inspected
and edited by humans. In response to edits, the AI will adjust its be-
havior, such as revising an implementation; the AI may also amend
the specification in response to the user or to better reflect new
implementation details and assumptions [92, 100] (Fig. 2).

As we mention in our introduction, the integration of new infor-
mation into an intent specification is not (always) straightforward.
People and ideas change. New information may conflict with prior
information, especially as projects and user interactions stretch
from days to months and years. Proposed approaches to memory
with RAG architectures, which store all memories verbatim, do not
account for these potential conflicts (e.g., [1, 44, 74]).

To illustrate the nuances of semantic conflict resolution, consider
two chunks of information regarding a warp drive in a game. One
chunk states that “the warp drive can exceed the speed of light,”
2https://x.com/vitrupo/status/1900146068030914740
3https://github.com/vnglst/when-ai-fails/blob/main/shepards-dog/README.md
4Leveson [57] introduced the term “intent specification” in the context of software
engineering to track requirements. Our definition of intent specification is broader,
and more loosely defined to support a wide variety of documents and scenarios.

https://github.com/PatrickJS/awesome-cursorrules
https://github.com/PatrickJS/awesome-cursorrules
https://github.com/vnglst/when-ai-fails/blob/main/shepards-dog/README.md
https://CLAUDE.md
https://CursorList.com
https://CLAUDE.md

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

while the other chunk specifies that “when the ship’s warp drive is
activated, it first moves slowly and then suddenly operates at a very
high speed.” If a new chunk stating “no material can move faster
than the speed of light” is added, then a contradiction arises with
the first chunk. However, it is unclear whether it contradicts the
second about a “very high speed”—which in the full context implies,
but does not clearly state, faster-than-light travel. Any attempt at
fully automated semantic conflict resolution is subject to debate in
such situations because of the ambiguity of natural language.

Our chief insight is that integration of new information into an
AI memory store is a process that can require interactive, human-in-
the-loop feedback for aligned resolution. Both users and AI systems
need support for semantic conflict detection—to understand when
a conflict has taken place, with what information, and how—as
well as resolution, as resolving conflicts could involve the revision,
addition, or deletion of existing information in a manner that may
add or change details. To resolve conflicts, practical assistance may
require clarification of ambiguities, constructive negotiation of ideas
[92], or delegation of tasks [88, 100]. However, it remains unclear
how users update, and want to update, intent specifications in
practice. What affordances should AI memory interfaces have
for the process of integration? How do users think about
semantic conflicts and what needs do they have for resolving
them with confidence? How can we help users update intent
specifications like CLAUDE.md files with confidence? Before
returning to these questions, we first connect to existing literature
that can help shed light on this emerging paradigm.

2.1 Related Work
2.1.1 Design documents to coordinate work in human teams.
The rise of intent specifications mirrors what human teams already
do to coordinate actions. Across many domains—from product de-
sign, to game development, software engineering, UX design, and
animation—people standardize the vision (look, feel, goals, plans,
etc) of a project in documents that are often called “design doc-
uments” [11]. These documents serve to establish and maintain
common ground between parties [19], ensuring each member’s ac-
tions remain grounded in shared understanding and objectives. In
animation, the design document takes the form of model sheets
[69], which standardize how to draw characters and other assets.
Game developers use “game design documents” (GDDs) to keep
development grounded across a team [20]. In software engineer-
ing (SE) and UX research, need-finding processes produce a “sys-
tem requirements specification” that is passed off to the software
team [39, 63]. Programmers develop “coding style guides,” or norms
around naming conventions, comments, and writing tests, as well
as “contributing guidelines” that establish rules for external con-
tributors. These documents serve to externalize, standardize, and
coordinate the high-level intent of a team—its objectives, details,
procedures, and feel—and are revised as the project proceeds [20].

Intent specifications, while less formal than code, are a lot like
software: they encode dependencies among ideas that constrains
future evolution. These dependencies may be “sequential” (i.e., a
custom term is defined then used later on) or heterarchical. As in-
teractions continue, teams “commit” new information to the intent

specification, and must resolve outdated or inconsistent depen-
dencies. Maintaining consistency is paramount, because the very
purpose of these documents is to enforce consistency and define
standards. For instance, from a study of game designers: “[She]
writes the GDD as she is designing the game... taking anything out
of... the GDD that conflict with the consistency of her plot. [She]...
wrote her entire GDD... as a list, which she frequently added and
deleted from as she designed the game” [20, p.9]. The field of require-
ments engineering in SE also stresses the importance of clarity,
conciseness, completeness, and unambiguous requirements [23],
with “commission (inclusion of irrelevant or incorrect details) and
omission (exclusion of necessary details)” as additional concerns
[66]. However, revising requirements accurately may require con-
sideration of intent information outside formal specifications [57].

2.1.2 Impact analysis in software engineering. In software
engineering, visibility on the ramifications of a feature change or
addition is called impact analysis: identifying what parts of the
shared context (code repository) will need to be amended, for the
change to occur [6]. Impact analysis “predict[s] the system-wide im-
pact of a change request before actually carrying out modifications
to the system... so that appropriate decisions related to the change
request can be made, such as planning, scheduling and resourc-
ing... The potential impacts are then interactively validated by the
user” [38, p. 174-181]. Impact analysis is complemented by feature
localization (retrieving relevant context to inform impact detection)
and followed by change propagation (actually making changes to
code) [24]. In our non-coding context, we might interpret these
steps as first retrieving relevant info, then detecting what infor-
mation is impacted, then helping users make changes. Note that
impact analysis is a sense-making task, less a coding one: impact
analysis primarily surfaces system entities and dependencies that
may be affected by a proposed change, although some tools do help
users change the underlying code [50].

2.1.3 Conflict detection and resolution techniques and in-
terfaces. Conflict detection and resolution are classic problems in
computing, usually arising in contexts of collaborative information
processing to merge asynchronous changes. Engineers have devel-
oped techniques such as version control [70], groupware platforms
and database synchronization [55, 61, 75], and concurrency-control
systems [26, 37]. The ‘git‘ command-line interface [76], for instance,
is a popular version control system where users make “commits”—a
change to a file repository, alongside a pithy message—to keep
track of changes. To help users understand differences between ver-
sions, many interfaces present “diffs” [46]. Numerous LLM writing
tools have been proposed that incorporate diffs, spanning various
areas such as story writing [17, 18, 99], screenplay writing [68],
poetry [32], dictation [60], and argumentative [94, 101] and sci-
entific [29] writing. InkSync [56], for example, is a prototype for
executable and verifiable text editing with LLMs, which shows LLM
edits as diffs on the document. To make diffs, InkSync uses string-
matching: it relies upon the LLM to reproduce extracts of text to
change, and then specify the replacement; this method is also used
by Anthropic Artifacts [78].

These conflict algorithms operate on syntax, rather than seman-
tics. Current interfaces provide little to no support for users to see

https://CLAUDE.md

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

the semantic ramifications of their changes on the rest of the docu-
ment. An example is editing a scene in a novel: would changing a
lunch between two characters to a dinner setting impact something
hundreds of pages later? These semantic conflicts require dedicated
support to detect, visualize, and resolve. Semantic conflict resolu-
tion interfaces must go beyond visualizing what changes were made,
to what changes could be made, where they should be made, and
what the effects might be. This resembles feedforward: affordances
that help the user foresee the impact of an action [67, 93].

2.1.4 Human-AI collaboration grounded in shared, interme-

diate representations. HCI has, in a sense, always been about
communicating to machines through shared representations [4, 41].
However, past shared representations had to be strictly formalized—
into programming languages, domain-specific languages (DSLs),
schema, etc.—to ensure deterministic outcomes. These shared repre-
sentations helped negotiate agency between humans and machines
[40], but ultimately could only go so far, as end-users always re-
signed some agency to the representation designer(s) [58, 92].

Today with LLMs, we are less limited by this constraint, and
solutions to the problem of human-machine communication might
be better found in cybernetics theory [9] than static formalism.
Effective human-AI communication relies upon tight feedback
loops [100], but also offering humans control in the form of trans-
parency over AI understanding and context. Along these lines,
emerging HCI research envisions that AI systems will be grounded
by shared representations of a more informal nature—lists of direc-
tives expressed in natural language [66, 92, 100]. Some researchers
even argue that these informal expressions of intention will be
“all you need” [80, 81]. For instance, Vaithilingam et al. imagine a
hypothetical AI game design assistant where the AI “[integrates
user] choices into the project plan” [92], while Zamfirescu et al.
explore an iterative design loop with an AI agent that “tracks deci-
sions that the human has made” and “surfaces decisions the LLM
has implemented in the code” in a running list [100]. Ma et al.
define “requirement-oriented prompt engineering,” helping users
generate a “clear, complete requirements” list prior to prompting
an AI to implement software. They stress that making a good list
requires skill and support [66]. These projects speak to the need
for targeted support for updating intent specifications that ground
AI behavior. Ensuring alignment with user intent (e.g., by reduc-
ing inconsistencies) is critical: miscommunications are the chief
reason for breakdowns with AI agents [88], and the potential of
failure compounds as communication continues without addressing
misunderstandings [85].

2.1.5 Natural language inference, reference ambiguity, and
knowledge graphs. Finally, the technical side of our work relates
to natural language inference (NLI), a research area in NLP [49] that
concerns the classification task: Given two sentences—a premise
sentence and a hypothesis–does the hypothesis sentence follow
from (entailment), contradict, or bear a neutral relationship to the
premise? HCI scholars have applied NLI to data annotation [95],
in-situ summaries [62], and LLM response consistency [16]. Our
discussion of NLI provides additional context for our system design.

Detecting conflicts is by no means an objective task; human
annotators frequently disagree [14, 49]. Jiang & de Marneffe [49]

investigated reasons for human disagreement during NLI classifica-
tion and argue for a fourth category, “complicated,” which increased
model recall. Their goal was “not necessarily to maximize accuracy.
A model that can recall the possible interpretations is preferred
to a model that misses them” [49, p. 1365]. Chen et al. [14] also
introduced a fourth category, “ambiguous,” to denote situations
where “it is unclear whether the claim and the evidence refer to the
same context... [i.e.,] there exist multiple possible assignments or
interpretations.” The authors refer to this as reference ambiguity—
when the two sentences could coexist, but it is unclear—and found
that it explained many annotator disagreements [14].

NLI appears in recent discussions on the future of SE, which
propose that LLMs may be used for formal requirements analysis
[7, 90]; e.g., Lubos et al. [65] studied how LLMs can provide quality
feedback on requirements, while Fantechi et al. [27] analyze an
LLM’s ability to detect inconsistencies. Importantly, Fantechi et al.’s
method simply fed in the entire list into the LLM and asked it to
detect conflicts; they found that LLMs could only process “short
requirement documents” this way. They conclude that despite lower
accuracy compared to humans, “manual detection of inconsistencies
is more expensive,” growing quadratically with list size, “whereas
examining [LLM] answers to distinguish true from false positives
is a much lighter task” [27, p. 338]. Fazelnia et al. [28] also trained
an NLI model to analyze requirements lists, and concluded that NLI
models suffered in multi-hop conflict detection.

To better capture dependencies among requirements, SE re-
searchers proposed ontology extraction, where a system generates
a knowledge graph [3, 23] capturing relationships between require-
ments, a method introduced by Kaiya and Saeki [51]. For instance,
Hsieh et al. [45] extract a domain-specific ontology by mining in-
formation from textbooks; while Dermeval et al. [23] use a web
ontology as a visualization technique to help SWEs in writing more
“correct,” “complete,” “consistent,” and “unambiguous” software re-
quirements. Such graph-based visualizations have also supported
impact analysis; for instance, Wolf [30] shows the impact of pro-
posed changes via a dependency graph. This work informed our
decision to use knowledge graphs (Section 5).

3 Design Goals
Here we chronicle our initial design goals for SemanticCommit,
as well as our revised goals as the result of two pilot studies.

We wanted to design a prototype to better understand what
interface affordances users need to facilitate robust and trustworthy
updates to intent specifications in a manner that 1) maintained
their alignment with user intent and 2) kept unrelated information
untouched. We thus went for a kitchen-sink approach: to include a
variety of features that users may, or may not, choose to engage in,
that seemed reasonable based on past conflict resolution interfaces,
and observe what features users find most important and how they
use these features in concert. Based on our review of past literature
on conflict detection and impact analysis, we identified an initial
set of design requirements for SemanticCommit:
• Foresee impact: Literature on impact analysis highlights the
importance of letting users predict the effects of a change [6, 24,
30]. Our system should allow users’ to foresee potential down-
stream impact without actually proposing any changes.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

• Detect conflicts: The system should assist the user in detecting
potential conflicts or contradictions, between existing informa-
tion and the new information being introduced [26, 27].

• Understand conflicts: The system should provide explana-
tions to help the user understand and reason about the conflicts.
Explanations support impact analysis sense-making [50] and
have been shown to improve trust in intelligent systems [59].

• Assist conflict resolution: Like some impact analysis tools
help users make code changes [38], our tool should help users re-
solve semantic conflicts at both global (i.e., entire document) and
local levels. The AI should suggest possible resolution strategies,
while leaving users free to manually edit at any time.

• Leave non-conflicting information unchanged: Integrating
new information should only touch pieces of information that
are in conflict, and leave others unchanged.

• Support local changes: Users should be able to inspect pro-
posed changes in situ and decide whether to accept, reject, or
further revise (such as via a “diff” view). Design guidelines on
human-AI agency and prior work also stress on giving users’
fine-grained control over AI suggestions [40, 56].

• Revert changes: Due to the stochastic nature of LLMs, and the
complexity of semantic commit task, it is vital to provide ways
to recover from AI failure [10, 98]. Proposed changes (edits)
should be able to be reverted at global and local levels (i.e., to
cancel specific revisions or back out from a wide-scale change).

• Work at scale: To support a wide range of contexts and long-
term usage, the system should operate at scale — handling
lengthy intent specifications without introducing latency. Users
should not have to worry about document length.
Note that there are other design goals which are important to

general user interfaces for managing AI memory—such as version
control, branching, and navigation (see Memolet [97])—but we do
not consider them here.5

It is critical to note that while some design goals overlap with
document editing interfaces, a primary goal of our research is to
produce design implications for situations where there may be no
manual document view—e.g., situations where the user is commu-
nicating entirely through a chat UI, where the AI is managing the
intent specification for them and may surface conflicts in a different,
constrained manner (and decide whether, when, and how to do so).
We intend that semantic commit will eventually be a programmatic
API for helping developers update intent specifications that ground
AI agent systems. Thus, we designed our interface to purposefully
constrain editing to separate pieces of information—“memories,”
details or rules—rather than enabling the user to perform freeform
writing tasks (i.e., think OpenAI ChatGPT’s memory store [73],
rather than Microsoft Word).

3.1 Early Prototype and Pilot Feedback
Our explorations went through substantial iterations and prompt
prototyping over a period of eight months, evolving in response to
two pilot studies and progressing from a card-based interface to a
list of texts. We chronicle our early design and formative studies.

5In particular, in real-life intent specifications like Cursor Rules, users sometimes
group lines together; we chose a simple list to avoid complexity in our initial design.

From our design goals, we built an initial prototype, where pieces
of information were written on cards akin to post-its and could be
freely moved. This interface was limited to prompting our conflict
detection feature, and studied how users would integrated changes
into (a chunked version of) the game design document for the
unpublished LucasArts game Labyrinth [31]. In this early prototype,
cards were only marked as either in conflict or not.

We ran one pilot study with five users of our card-based interface,
and a second with four users of a revised interface. Key takeaways:
• The color-coding of cards marked as conflicts drew user atten-
tion sometimes entirely away from manual inspection of non-
marked cards. Possibly in reaction, all pilot users preferred
higher recall over precision. They viewed false negatives
(missed detections of true conflicts) as catastrophic, while false
positives were easily handled with a quick skim.

• When asked, participants expressed a preference for a struc-
tured, sequential document view, over the cards interface.
One reason may be that users became fixated on sorting the
cards, another could be that documents are more familiar.6

• Users wanted finer-grained insight into the degree of conflict.
Users wanted a quick visual way to understand where they
should spend their limited attention.

• Participants would iterate on their prompts to the conflict
detector and resolver, in case the output did not exactly match
their intent. It seemed less important that AI sometimes made
mistakes, and more that they were easily fixable.

• In post-interviews, users suggested that the degree to which
they trusted the AI depends on their degree of investment
in the information. If they felt invested, they would trust the
AI less to make direct changes.
In response, we added more design goals to our initial list:

• Recall-first: Favor recall over precision for conflict detection.
• List view: The system should prefer more standard document
views, which present manageable chunks of information se-
quentially, than open-ended diagramming canvases.

• Visualize degree: The system should help users understand
the degree or importance of a conflict at a glance.

• Help user recover from AI errors [71]: The system should
support fast iteration, in case of AI mistakes, by allowing the
user to steer the detector or resolver with a prompt.
Based on these goals and feedback, we adjusted our interface

and study protocol. The most important change we made was how
strict our conflict detection retriever and filtering prompt was: we
loosened it considerably, to enhance recall at the expense of pre-
cision. We also added a third classification, “ambiguous,” to imply
a lesser “degree” of conflict, a decision solidified after review of
papers in NLI [14, 49]. Ambiguous conflicts appear as a softer pink
color to imply reduced importance, directness, or confidence that
the information is truly in conflict.7 This prompt engineering was a
delicate balance: too restrictive and the system tends to only rarely
include ambiguous options; too generic and it flags almost all pieces

6This preference seems to map to the “cursorrules”-like situations of editing Markdown
documents, which weren’t popular at the time of our pilot.
7As we rely upon LLMs, this is not an exact science. Indeed, the aforementioned NLI
papers also show that even with human annotators, there is little consistent reason
why something is categorized as “ambiguous” or “complicated” [14, 49].

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

3. Upon hover, shows
reason for conflict

1. User provides new
information and clicks

Make Change

2. AI suggests changes to
highly conflicting items,
leaves others for review

4. User clicks to perform
a local rewrite

5. To finalize conflict resolution,

user manually …. resolves items
and/or clicks Clear All Conflicts

Figure 3: Example of our SemanticCommit workflow, showing one process of integrating new information into an AI memory
of the financial habits of a South Korean student. 1. The user has described a new piece of information and pressed Make
Change. 2. SemanticCommit detects conflicts and suggests changes to items it deems the most conflicting, leaving other
conflicts for human review. 3. The user hovers over conflicting items to view the AI’s reasoning. 4. For one item, they click a
button to let the AI make a local rewrite. The user can continuing editing, manually revising, reverting suggested changes, or
deleting items at will. 5. When they feel done, they manually resolve items and/or clear remaining conflicts with a global action.
(Alternatively, the user could have clicked Check for Conflicts to only perform detection, then handled conflicts locally.)

of information as potentially conflicting. We iterated on our sys-
tem decision choices with more confidence by validating changes
against a custom evals dataset, which we discuss in Section 5.

4 SemanticCommit User Interface
Here we overview our final design and walkthrough examples of
usage. Figure 1 shows our prototype, with global operations:
• The Check for Conflicts button provides the
ability to perform impact analysis [6], which only highlights
potential conflicts without suggesting changes, allowing the
user to get a sense of how much effort a change might require.
They may choose to manually resolve each conflict, or back out
and decide upon a different course of action.

• The Makes Changes button performs Check for
Conflicts then lets the AI propose a rewrite. The back-end uses
the same procedure as check for conflicts, then performs a global
rewrite of all detected conflicts in order to incorporate new in-
formation. Critically, the LLM can decide not to rewrite infor-
mation, even after it has been flagged (this is to avoid redundant
changes); flagged conflicts that were not changed remain high-
lighted for human review.

• The Add Info button allows the user to manually add a piece
of information.
More features are shown in Fig. 1. Local conflict resolution

options include letting the AI rewrite, steering a rewrite, applying a
suggested resolution strategy, reverting a change, and deleting the
information. Global conflict resolution options complement this,
allowing the user to steer a global rewrite via a prompt or choose
a suggested resolution strategy. Users can also perform global
actions to Revert All proposed changes, or Clear All Conflicts
(putting all pieces of information back into a neutral state). Finally,
red underlines are an experimental feature that suggests words
which contributed the most to the conflict (in Fig. 1, “primary” is

bold-underlined to imply that nuts are likely no longer the primary
collectible when the player is a fox).

The only feature missing from our figure is a “request intent
clarification” pop-up that appears when the AI classifies a user
request as potentially resulting in many changes (Section 4.1.3). We
observed that high-impact changes, like changing a game’s setting
from Mars to Venus, could incur many second-order effects and
deserves an additional clarification round before proceeding with
(relatively more costly) conflict detection.8

4.1 Walkthrough of Usage
Let’s walk through three examples of system usage in different
domains: an investment advisor agent, updating the directives for
an AI software engineer, and updating a game design document.

4.1.1 Updating memory of an investment advice agent. As
a simple example, imagine an AI agent for investment advice has
accumulated a memory of the user, a South Korean college student,
after many chat sessions. These include details such as financial
goals, life events, employment history, etc. Now this user invests
in a cryptocurrency and expresses excitement about diversifying
more assets into crpyto. Using SemanticCommit, we add this piece
of information to the list, and the system detects potential semantic
conflicts which may require human review (Figure 3). A user clicks
the “Make Change” button, which adds a new piece of information
(deducing that it should do so, which is not always done), detects
conflicts, then proposes changes to ensure the memory remains
consistent with the new information. One line it proposes deleting
entirely, another it rewrites, and others it flags for review.

Notice how semantic conflict detection leveraged the LLM’s
general knowledge: a mention that the user likes Warren Buffet’s
investment strategies is highlighted as a potential conflict. Buffet, a

8Our prompt to the AI for this step is simple and more of a prototype: here, we simply
feed the entire context in alongside the user’s change, and ask the AI to provide a
question if it decides the change is high-impact enough to deserve clarification.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

Figure 4: Cursor Rules [90] adapted from the Instructor li-
brary [48], loaded into our SemanticCommit UI. The user
has added a new directive to squash commits before pushing
a feature branch. The system adds the new rule to the top,
makes a revision, and flags other lines as potential conflicts.
One change is in error, which the user can spot and revert.

famous investor, avoids cryptocurrencies and has declared them “rat
poison squared” [54]. Clicking the Let AI Propose Change button
on the local information, a slight rewrite is proposed where the
claim is softened (Step 4 in Fig. 3).

4.1.2 Updating rules for an AI software engineer. Consider
a user has a list of Cursor Rules, describing how an AI software
engineering agent should behave in a code repository (Figure 4).
(Here we use real cursor rules adapted from Instructor API’s
open-source repository [48].) The user adds a new directive, com-
mon to software engineering practice: “To keep history linear and
clean, always squash your commits before pushing a feature branch.”
SemanticCommit highlights “Keep commits focused on a single
change” in red, indicating direct conflict, and “If the feature is very
large, create a temporary `todo.md`” in pink, indicating an ambigu-
ity. The first is unclear how to resolve: removing it seems unwise,
but keeping it unchanged incurs confusion. The AI has also added
a mention of squashing commits, after the line, “When being asked
to make new features, make sure that you check out from main a
new branch and make incremental commits.”

4.1.3 Changing a game design document. Finally, imagine
a game designer has a design document for a game set on Mars,
which an AI agent implements. After some playtesting, they decide
that Mars is overused in sci-fi narratives, and communicate that
they want to switch the setting to Venus. Here, the AI has estimated
that the change is significant enough to request further clarification
from the user before continuing:

The user provides clarification, and conflict detection proceeds.
The AI makes the most obvious changes—changing the term “Mars”
to “Venus,” mainly—while flagging other potential conflicts for
review. A subtle semantic conflict, that Mars has sandstorms but
Venus does not, is detected and changed to a more generic “storm”,
steered by the user’s clarification:

These examples illustrate that conflicts: a) may require general
world-knowledge to detect, b) may be hard to resolve, and c) how
to resolve a conflict can be a matter of creative decision-making.
Resolving even a single change accurately is important, as unre-
solved conflicts can cascade as more changes are made. Using this
system, we also learned why some conflicts occur—the Buffett ex-
ample above was not something we were aware of—or could be
forced to reckon with second-order effects, such as re-thinking the
sandstorm mechanic to better fit the planetary conditions of Venus.

Note finally that our system does may mistakes—conflicting in-
formation can be missed, as our technical evaluation shows; conflict
detection and retrieval are stochastic; reasoning can sometimes be
superfluous; and in practice, some knowledge base domains can
benefit from adding a temporal feature to information (i.e., a limited
duration where a rule holds). However, we believed the system was
strong enough to run a user study in order to better understand
where further efforts should be directed.

4.2 Implementation
SemanticCommit is implemented in React and TypeScript, with
a Flask Python backend for our knowledge graph-based retrieval
architecture (described in Section 5). We iterated on prompts using
ChainForge [5] by setting up an evaluation pipeline against our
datasets, which allowed us to observe the effects of prompt changes
and model choices. There are many prompt-based functions, from
the user intent router, to conflict detection, local and global revision,
underlining “highly conflicting” words, and suggesting resolution
strategies. We chose GPT-4o for performance and latency reasons,
as it performed optimally against our evals. Further details on our
development process and system are in Supplementary Material.

5 Back-End for Semantic Conflict Detection
We implement a back-end system to drive the interface of Se-
manticCommit. The back-end’s primary goal is to enable conflict
resolution at scale. During early prototyping, we found that sim-
ple methods—giving the entire context to the LLM, or generating
string-replace operations [56]—were prone to missing conflicts.
These techniques rely on a single prediction, which takes the entire
memory store and produces either a rewritten version or a set of
suggested edits. Rewriting the document frequently introduced
superfluous changes unrelated to conflict resolution and can have
large latency due to output size. As an alternative, we considered
vector store retrieval from simple retrieval-augmented generation
(RAG), but this method is known to perform sub-optimally in cases
requiring multi-hop reasoning [25, 36], where dependencies among
chunks are heterarchical (understanding one chunk can depend
upon considering it alongside several others) .

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

InkSync
drop-all-docs

SemanticCommit

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

gpt-4o

gpt-4o-mini

(a) Accuracy (Mean ± StdDev)

InkSync
drop-all-docs

SemanticCommit

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

gpt-4o

gpt-4o-mini

(b) Precision (Mean ± StdDev)

InkSync
drop-all-docs

SemanticCommit

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

gpt-4o

gpt-4o-mini

(c) Recall (Mean ± StdDev)

InkSync
drop-all-docs

SemanticCommit

0.0

0.2

0.4

0.6

0.8

1.0

F1
_s

co
re

gpt-4o

gpt-4o-mini

(d) F1 Score (Mean ± StdDev)

Figure 5: Comparison of SemanticCommit using a knowledge graph with PageRank relevance assessment and then classification
to two baselines: (i) DropAllDocs: takes all documents in context to classify them without a retrieval stage; and (ii) InkSync [56]
implementation, reformulating the prompt to our context. The comparison is across all benchmarks in Table 1, averaged with
st. dev. bars, for the GPT-4o and GPT-4o-mini models. Our method, kg-pagerank, achieves higher recall with similar accuracy.

To tackle these limitations, we implement the back-end using
a knowledge-graph (KG) RAG architecture [36] consisting of two
phases: pre-processing and inference. The pre-processing phase
constructs a KG by extracting entities from a collection of input doc-
uments in the memory store and linking them. Each of the entities
keeps track of the relevant document from which it was extracted.
The inference phase detects semantic conflicts using a multi-stage
information retrieval (IR) pipeline. The IR pipeline takes an edit
action (whether it is an insertion or a modification to the memory
store) and produces a list of chunks of information in conflict. It con-
tains two stages: (i) retrieval: finds relevant chunks of information
using the KG in a single-step to avoid error propagation. In order
to minimize relevance assessment issues, we apply a PageRank-
based relevance ranking over the KG, akin to HippoRAG [36]; and
(ii) conflict classification: identifies from the retrieved chunks of
information which ones are in conflict with the edit. Based on NLI
literature (2.1.5) and our pilot studies (3.1), our detection prompt
includes a classification of “ambiguous” (Appendix A).

In the rest of this section, we give an overview of our design
considerations and their rationale through an technical evaluation.
We highlight that our prototype back-end system, achieves higher
recall than the simple methods with similar accuracy.

5.1 Technical Evaluation
Our goal is to technically validate key aspects of our design de-
cisions. We compare our end-to-end system against two simpler
methods: (i) DropAllDocs, which adds all documents to the con-
text for conflict classification; and (ii) InkSync [56] which generates
a JSON list of string-replace operations. These comparisons allow
us to analyze the impact of separating conflict detection from resolu-
tion, separating retrieval from conflict classification, and evaluating
the performance of different LLMs.

5.1.1 Evals. To conduct our evaluation, we created four small eval-
uation datasets on three distinct domains:
• Game Design: We use two game design documents. The first is
from Labyrinth [31] by LucasArts (1986). The second includes
excerpts from an original by one coauthor, describing a fictional
game set on Mars about the first generation of children born
there. The documents are chunked into paragraphs and referred
to as the Labyrinth and Mars datasets, respectively.

Benchmark Ch M CS (Min, Median, Max)

Labyrinth 35 17 (0, 4, 10)
Mars 30 25 (0, 2, 14)
FinMem 30 17 (0, 4, 10)
CursorRules 65 19 (0, 3, 25)

Table 1: Benchmark details including number of chunks (Ch),
number of prepared modifications (M), and conflict statistics
(CS) (min, median, max) across modifications.

• Financial Advice AI Agent Memory: AI agent memory in
the style of OpenAI’s ChatGPT memories, about the investment
strategies, financial situation, and background of a fictional col-
lege student living in South Korea (prepared by a South Korean
coauthor). We refer to this dataset as FinMem.

• Coding Assistant Rules: Rules for the Cursor IDE [21], which
are intent specifications for coding assistants. A subset of the
rules was adapted from the awesome-cursorrules GitHub repos-
itory. We refer to this as the CursorRules dataset.

Eval domains were chosen to cover three major types of intent
specifications from Sec. 2.1. Four coauthors created the evals, and
two coauthors manually double-checked all conflicts, a process that
took several days. During this inductive process, they discussed
with two coauthors on how to classify conflicts into direct, ambigu-
ous, and non-conflicts, and adjusted classifications accordingly (see
Appendix F for full details).

For each of these datasets, we introduce updates as insertions or
modifications to chunks of information, intentionally introducing
varying numbers of conflicts. Table 1 summarizes each of the evals
including the number of chunks, the number of updates to apply as
part of the eval, and statistics on the number of conflicting chunks
per update (min, max, and median). These initial evals served as
a foundation for prototyping our approach and preparing user
studies.

5.1.2 Experiments and discussion. We compare our approach with
the two baselines: DropAllDocs and InkSync. We run end-to-
end on our four eval datasets using GPT-4o and GPT-4o-mini and
report the mean ± stddev for accuracy, precision, recall, and F1
scores for the three approaches in Figure 5.

Our results show that SemanticCommit achieves higher re-
call (1.6× and 2.2× higher) than DropAllDocs and InkSync, re-
spectively, while retaining similar accuracy. This better addresses

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

user preferences mentioned in our pilot studies and Related Work
(2.1.5), reducing risk of false negatives. Additionally, our system
matches the F1 score of DropAllDocs, outperforming InkSync by
1.6×. While its precision is comparable to that of InkSync and 1.6×
lower than DropAllDocs, we consider this an acceptable trade-off
given our emphasis on maximizing recall. Note that our evals are
rather skewed with highly targeted conflicts (on average, only a
few ground truth items in conflict when integrating new informa-
tion), and accuracy can be misleading in such a setup, as assigning
non-conflict to all documents would still yield high accuracy.

Overall, InkSync performs worst likely due to its combination of
both conflict detection and resolution in a single prediction. In con-
trast, both SemanticCommit and DropAllDocs benefit from task
decomposition, achieving similar F1 scores. SemanticCommit’s
additional decomposition intro retrieval and conflict classification
enables independent optimization contributing to the higher recall.
This decomposition proves beneficial even when it is possible to fit
all documents into the context window, as we observe worse con-
flict classification as the false positive rate (FPR) increases. Filtering
down the chunks of information remains preferable.

We also ran evaluations of model latency and classification
performance under varying false positive rates for the following
LLMs by OpenAI: GPT-4o, GPT-4o-mini, and o3-mini. We selected
GPT-4o for its slightly better performance, comparable latency to
GPT-4o-mini and for being twice the speed of o3-mini. Additional
details on FPR sensitivity and a comparison with o3-mini are pro-
vided in Appendix B of our Supplementary Material.

6 User study
To understand how users integrate new information in practice, we
conducted a controlled within-subjects study with mixed methods,
comparing SemanticCommit with a baseline interface. We had the
following research questions:
• Which interface affordances do users prefer (use most often)
when performing an integration of new information?

• How do users think through the process of integrating new
information into an AI’s existing memory store, with regards
to detecting and resolving potential conflicts?

• Does SemanticCommit make users feel more in control of the
integration process, over a more open-ended one?

• Does SemanticCommit’s required manual review increase user
workload compared to a more automated method?
We compared with a baseline to better understand: 1) any inter-

face affordances our structured environment might miss, compared
to an open-ended one; 2) how users might currently use popular
AI-based tools to handle the process of integration, in the absence
of targeted support. We chose OpenAI’s ChatGPT Canvas as a base-
line for five reasons: (i) it is a popular, commercially available tool,
hence it is likely familiar to users; (ii) it provides a document editing
view, where users can select text and ask GPT to rewrite it, or chat
with an AI to make global edits; (iii) it employs a similar class of
model (GPT-4o); (iv) it supports similar editing features as Seman-
ticCommit like inline text selection, conflict highlighting, and a diff
view, while adding free-form editing; and (v) similar interfaces like

Anthropic Artifacts tended to rewrite the specification entirely, and
did not offer Canvas’s “diff” view to allow for a fair comparison.9

Participants. We recruited 12 participants (7 female, 5 male)
through the mailing lists of two research universities and one multi-
national technology company. All the participants were familiar
with GenAI tools. Ten participants used GenAI tools daily, and the
other two at least weekly. ChatGPT was the most commonly used
tool, alongside others, e.g., Gemini, MS Copilot, Claude, Perplexity,
and Deepseek. Seven participants had previously used Canvas-like
tools, and eight had used persisting memories (or preferences) with
AI tools. Of these eight, four participants actively manage their
memories either by adding, editing, or deleting them. Participants
received a $25 Amazon Gift Card as compensation.

Tasks. We adapted two intent specifications from our evals:
Mars Game Design Document and Financial Advice AI Agent Mem-

ory, as these tasks mapped to the two paradigmatic types covered
in Sections 2 and 2.1 (design documents, and AI memory of the
user). We ensured each list was 30 items long as our pilot studies
suggested this was long enough that manual detection starts to
become unwieldy (users need to scroll up and down the document),
but short enough that participants could become familiar in a short
period. For each task, participants were tasked with integrating
three new pieces of information into the memory, one at a time
(“sub-tasks”). We told participants to only change pieces of informa-
tion that conflict with the new information, and that otherwise they
were free to make additions, edits, and deletions as they saw fit. One
of our tasks directly asks users to imagine they are an information
management system that is managing memories about the user, in
order to mimic how automated memory management systems will
need to be conservative in changing information. More details on
our tasks are provided in Supplementary Material.

Procedure. We hosted SemanticCommit online, allowing par-
ticipants to access it via their web browser. For access to Canvas,
we provided credentials for a ChatGPT account specifically created
for the study to control for model and feature differences. With
participant consent, we recorded audio and screen-casts, and par-
ticipants were encouraged to think aloud. In each study session,
the participant completed one of the two tasks each (each task
containing 3 sub-tasks) using both the tools. Both the order of task
assignment and tool assignment were counterbalanced and ran-
domly assigned. Before each task, participants received a tutorial
on the assigned tool and were given five minutes to explore it using
a test document. We also provided a summary of the task document
and time to read through it before starting. Each condition had
a time limit of 15 minutes, after which the participant completed
a post-task survey. After both tasks were completed, participants
filled out a final survey to compare the two conditions. Finally, we
conducted an informal interview about their experience.

Measurement and Analysis. For each task, we measured the
success or failure of each sub-task the participant was required
to perform. A sub-task was considered a failure if the participant
was unable to complete it within the time limit. For condition

9We focused on AI-assisted conditions because our ultimate goal (and anticipation)
is that AI will keep track of user intent, especially as the intent specification grows
lengthy and unwieldy. Even within our limited evals, we encountered how time-
consuming conflict detection can be: manually identifying conflicts for a single new
piece of information could easily take 10 minutes, if one was being precise.

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Figure 6: Participants’ self-reported cognitive load and pref-
erence scores that directly compare the two conditions.

using SemanticCommit, we recorded all instances of edits, check
for conflicts, make change, local, and global resolution actions using
telemetry. In the post-task surveys, we collected self-reported NASA
Task Load Index (TLX) scores, Likert-scale ratings for ease of use,
and responses on how well the AI helped participants identify,
understand, and resolve semantic conflicts. In the post-study survey,
completed after both tasks, we recorded participants’ self-reported
tool preferences and a modified NASA TLX focused on comparing
their experiences between the two tools. For qualitative analysis,
the first author performed open coding on participant responses and
audio transcripts to identify themes, which were used to interpret
the qualitative results. To measure statistical significance, we used
Mann–Whitney–Wilcoxon tests and report the p-values.

6.1 Findings
6.1.1 Preferred Workflow. Participants employed distinct work-
flows with each tool. We recount three characteristic workflows of
SemanticCommit first, then compare to user behavior in Canvas.

Impact analysis first. Six participants (P1, P2, P4, P5, P9, P10)
always began with Check for Conflicts, gaining insight on the im-
pact of the change before integrating any changes. Participant P2
explained why they prefer check for conflicts by saying “I really like
the check for conflicts action – it still gives me control, and it feels
collaborative instead of me kind of scrolling through the whole thing
and trying to find it [referring to Canvas]. It highlights points of
issues where I can plug this in.” Participant P7 explained, “I know
where to make the edit, but I will use the global check so that I can
find other places I might have to change”. All but one participant in
this group proceeded exclusively with localized edits afterward.

Immediate changes with conflict review. Five participants
(P3, P6, P7, P11, P12) always started the task with the Make Change
feature to see the conflicts and the potential changes at once. They
then followed up with local changes. P3 said “This one has a lot of
changes, so I’m going to use the global option. I’m just going to make
change, and then figure out what to keep.”

Skim to resolve false positives before proceeding. A method
adopted within the two workflows, four participants (P3, P6, P9,
P10) using SemanticCommit first quickly perused all the conflicts

to resolve the false positives10 and then proceeded to spend time
resolving the actual conflicts.

In Canvas, users instead lean heavily on global rewrites.
When using Canvas, eight participants (P1, P2, P4- P6, P10 - P12)
predominantly utilized global prompts, instructing ChatGPT to per-
form edits throughout the entire document, while four participants
preferred starting with global edits and subsequently performing
local rewrites by selecting specific lines. As we recount below, this
behavior intersected with frustrations from lack of control and the
metacognitive demands [89] of prompting.

Workflow choice can depend on context. When asking par-
ticipants how they pick between local vs. global resolution, they
gave two major reasons—complexity of change and familiarity with
the document. For example, P9 mentioned they would use global
resolution techniques when they perceive the impact is higher—
“There is a lot of information here, it is much harder to go through
it one by one. So I wanted to check for all the conflicts with the doc
and then change it [collectively].” The choice also depends on how
familiar they are with the contents of the document. P12 said “And
I’m gonna go to [SemanticCommit] and put this as a global change.
And I’m gonna say, first check for conflicts before making a change
because I haven’t read the complete document thoroughly.”

6.1.2 Improved ability to catch semantic conflicts. Nine par-
ticipants (P1 - P4, P7, P8, P10 - P12) explicitly stated that Semantic-
Commit was better at identifying conflicts compared to Canvas.
In the post-study survey ranking, participants additionally report
a higher level of task success with SemanticCommit compared
to Canvas (𝜇=2.42; 𝜎=1.5, where 1 indicates full preference for
SemanticCommit), higher levels of success in identifying seman-

tic conflicts (𝜇=2.08; 𝜎=1.5) and in understanding semantic conflicts
(𝜇=2.25; 𝜎=1.95). As P4 noted “It feels like you can identify inconsis-
tencies easier in [SemanticCommit], which is what I liked a lot. So I
favor that more. I’d feel I’d be a lot faster at getting work done.”

This preference stemmed from two primary reasons. First, six
participants (P2, P3, P4, P8, P11, P12) explicitly mentioned that
when using SemanticCommit, the granularity of information and
the red-colored highlights enabled easy conflict identification. P12
explained this in terms of context for the AI by saying “I think the
[SemanticCommit] tool is great in finding conflict, that’s because it
discretizes information, it’s much more granular. It doesn’t club all
the context together.” Second, except P2, all the other participants
heavily relied on the rationale provided by SemanticCommit when
understand why a conflict occurred. P8 explained this by saying
“With [SemanticCommit]... there is stronger explanation provided as
to why that conflict is occurring.”

Inconsistent conflict detection in Canvas leads to frustra-
tion and flailing. In contrast, nine participants (P1 - P3, P5 - P9,
P11) noted that Canvas often missed conflicts or failed to under-
stand the changes they wanted to make. Across 18 cases involving
10 participants (P1, P2, P3–P7, P9–P12), Canvas failed to detect even
a single conflict during the task. In 9 of these cases, participants
accepted the results without further checks; in the others, they
had to either manually spot the issues or retry with more specific
prompts. We highlight some of the observations below.

10Participants considered “false positives” as the conflicts flagged by the system that,
in their subjective judgment, did not require meaningful intervention.

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

Figure 7: Participants using SemanticCommit made signifi-
cantly more edits and intervened edits compared to Canvas.

In one instance, P5 had explicitly asked Canvas to find conflicts
in the document. When the tool failed, the participant manually
pointed out a conflict by quoting the text, and the AI model came
up with a convoluted reason as to why it was not a conflict. P5
retorted by saying “It is giving me an excuse.” In a different task,
P5 exclaimed “Looks like it just added one statement, and there is no
conflict. [5 seconds later] Oh wait! the GameBoy aesthetics is conflict-
ing”—catching a false negative manually in real time. In another
instance, P9 prompted the Canvas tool three times to identify con-
flicts and make a change, but each attempt failed. Frustrated, they
exclaimed, “It didn’t change it the way that I wanted. Maybe I’ll delete
this and do it myself and specify what I want to be changed” before
proceeding to manually make the change.

There were eight instances with six participants (P1, P2, P5, P7,
P11, P12), where Canvas drastically changed the contents of the
document either by replacing all the contents or by making heavy
modifications. We then instructed the participants to restore to a
previous version using version history.

6.1.3 Greater sense of control with SemanticCommit. A re-
curring theme among participants was the strong sense of control
they felt while using SemanticCommit. Nine participants (P2, P3,
P4, P6, P7, P8, P10, P11, P12) explicitly mentioned that Semantic-
Commit offered them more control over the integration process
compared to Canvas. In the post-study survey ranking, participants
additionally report a higher level of control with SemanticCommit
compared to Canvas (𝜇=2.08; 𝜎=1.36, where 1 indicates full pref-
erence for SemanticCommit), as well as a higher level of success
in resolving semantic conflicts (𝜇=2.17; 𝜎=1.34). This perception of
control emerged due to several reasons mentioned below.

Granular insights into conflicts: Six participants (P2, P3, P4,
P8, P11, P12) emphasized that the fine-grained presentation of infor-
mation in SemanticCommit made it easier to identify, understand,
and resolve conflicts—particularly for localized edits. The piece-by-
piece breakdown gave users a clear sense of what was being altered
and why. As P11 explained, “you have some concept of a line—every
element is aligned, so you probably have more granularity to control
the elements that are being changed. That was really nice... I never
had to worry that the entire document is going to get changed here and
there.” This precision allowed participants to maintain a stronger
grasp over editing and focus their attention where it mattered.

Conflict reasoning encourages critical reflection: The tool’s
detailed breakdown of conflicts and its reasoning behind proposed
changes encouraged users to think more critically about edits. P12
described how this led them to re-evaluate parts of the content they
might have otherwise overlooked: “So yeah, [SemanticCommit]
improved the conflict finding even more... there were some parts in
the document I would have ignored if I was doing it on my own. I
wouldn’t have considered some graphic design aspects of the game,
but [SemanticCommit] provided its reason on why it has raised
this as a conflict made me reconsider my decision. I like that part,
because I would have easily ignored it, and that would have led to
more iterations with more discussions.”

Forced review enhanced sense of control over process: An-
other factor that reinforced a sense of control was the editing work-
flow itself. Unlike Canvas, which applied changes automatically,
SemanticCommit required users to first review conflicts, make
changes, and then manually click the resolve button to validate
them. This structure helped participants feel like they were direct-
ing the process. As P10 observed, “In [SemanticCommit] it was a
step by step process to see the conflict, before making any changes
whereas in [Canvas] there was no decision making on my behalf
and it did the changes all by itself whether I agree with it or not.”
Similarly, P4 noted, “Making changes [with SemanticCommit] was
my favorite, because it walks you through every line, highlighting
recommendations like revise, delete, change, add, or nothing.”

This workflow—of reviewing conflicts, followed by local and/or
global resolution—also could make the task feel more collaborative.
Three participants (P1, P2, P5) described the process with Semantic-
Commit as collaborating with AI. P2 said “With [SemanticCommit]
you could ask it to look for conflicts. So you’re sort of partnering like
it would get the conflicts for you, and then you would move through
them systematically... I felt like with [Canvas], you didn’t have that
middle ground. It was either make the change or don’t.”

Loss of control breeds insecurity. Due to Canvas not identi-
fying conflicts and understanding instructions from participants,
combined with sudden and drastic changes to the document, eight
participants (P1-P6, P10, P11) explicitly mentioned they have doubts
and insecurity when using Canvas to make any changes to a docu-
ment. P2 said “Using [Canvas] was really uncertain. You know, you
just kind of felt like you’re guessing, and you didn’t know what was
gonna happen.” P6 also explained this by saying “The downside of
[Canvas] will be you just take it as it is, so you may not notice there’s
a part that should or shouldn’t be changed. You may just skip it, pass
it, and never notice the mistake the AI tool made.”

Responsive UI with many local resolution options: Partici-
pants also appreciated the responsive nature of the interface during
local resolution. As P11 described, “The [SemanticCommit] tool I
found quite intuitive, especially with the responsive nature where you
put your mouse on it and there’s a color code, and there’s a green
resolve button. The right-hand side gives you options to revise, reject,
delete, edit, or suggest a new revision, etc. That is really good.”

Ease of local reversibility: Like diff interfaces, participants also
valued the ability to manually review changes and locally undo or
dismiss them. P11 noted the friction in Canvas ’s reversal process:
“With [Canvas], if you want to reject changes, then you probably
have to undo and restore to the previous version, which seems a little

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

cumbersome. It’s not as simple as in [SemanticCommit] where you
could accept a change or reject right there in that line.”

Tradeoffs between control and efficiency: While many ap-
preciated the explicit approval mechanisms in SemanticCommit,
a few also noted potential tradeoffs. P3 acknowledged that the con-
firmation steps could feel excessive in low-conflict scenarios: “I
think sometimes it was overkill, if there were a pretty low number
of conflicts detected. But otherwise, I think it was nice to confirm.”
P12 framed this as a tension between control and usability: “I think
it’s important to do if you want finer control, but it really depends
on the application you want to package it as. If you want better user
experience, and you do not want them to spend more time, you would
have to give them less control.”

6.1.4 Perceived cognitive load. In the post-study survey, par-
ticipants’ preferences were measured using a 7-point Likert scale,
where 1 indicated a strong preference for SemanticCommit and
7 indicated a strong preference for Canvas. Participants reported
slightly higher levels of mental demand (𝜇=4.67; 𝜎=1.56), hurry
(𝜇=4.75; 𝜎=1.14), and perceived effort (𝜇=4.5; 𝜎=1.62) when using
Canvas compared to SemanticCommit. They also reported slightly
greater feelings of annoyance (𝜇=5; 𝜎=1.2) with Canvas.

However, when comparing post-task questionnaires, we ob-
served no statistically significant difference between conditions
regarding mental demand, sense of hurriedness or frustration, ef-
fort exerted, or perception of success (all p-values are 0.45 and
above). This null result was surprising to us, as we had expected
higher workload in the SemanticCommit condition due to the
increased demand as users manually click to resolve conflicts.

6.1.5 Task time and completion rates. On average, participants
took 4 minutes and 7 seconds (𝜎= 117 seconds) to complete tasks
using the control tool compared to 5 minutes and 41 seconds (𝜎= 123
seconds) using the experimental tool. This difference is statistically
significant (𝑝≈0.004). It is important to note that task completion
time does not capture task performance, as tasks encouraged par-
ticipants to spend additional time holistically integrating document
changes. We observed no significant difference in task completion
rates between the two conditions. Four participants failed to com-
plete one sub-task with Canvas compared to five participants with
SemanticCommit, with all failures attributed to insufficient time.

6.1.6 Participants made significantly more edits when us-
ing SemanticCommit. Measuring participant engagement in con-
trolled lab studies is challenging. Counting edits—with more edits
typically indicating higher engagement—is useful, but AI tools can
easily automate extensive editing, reducing reliability of metrics. 7.1 Implications
To address this, in addition to studying number of edits overall
(human- or AI-made), we also studied intervened edits—edits ex-
plicitly triggered by participants one at a time, whether manual or
with AI. These metrics give a more comprehensive picture.

Participants using SemanticCommit demonstrated significantly
higher engagement across both measures. They made an aver-
age of 5.83 edits (𝜎=3.21), compared to 3.5 edits with control
(𝜎=2.85; 𝑝≈0.001). This contrast was even stronger for intervened
edits, where participants using SemanticCommit averaged 4 edits
(𝜎=1.94) per task, while participants using Canvas averaged just

0.65 (𝜎 = 1; 𝑝<0.001; Figure 7). Finally, when using SemanticCom-
mit, participants made an average of 2.93 localized edits per task,
significantly (𝑝<0.001) higher than an average of 0.28 localized
edits per task when using Canvas. Participants extensively used
the different kinds of local resolution strategies such as revise, add,
and delete suggested by SemanticCommit. These differences high-
light the participants’ willingness to make more edits when using
SemanticCommit. This also helps explain the higher average task
completion time presented earlier—showing participants invested
more time in understanding and making more deliberate changes.

6.1.7 Participant trust and over-reliance. Trust emerged as a
complex and sometimes contradictory theme in how participants
interacted with the AI tools. While many participants expressed
skepticism toward AI-generated changes, their actual behavior
revealed moments of over-reliance—particularly when changes
appeared seamless or were not flagged as conflicts by the tool.

A majority of participants (P3, P4, P6, P7, P8, P10, P11, P12) ex-
plicitly stated that they did not trust the AI to make changes without
their manual verification. As P10 firmly noted, “No, I don’t trust any
AI blindly to make full and final changes to the result accurately. I
always verify manually to spot any mistakes or misinterpretations by
AI.” This sentiment reflects a baseline level of caution we expected
the participants to carry throughout the tasks. When comparing
the two tools, six participants (P1, P2, P5, P6, P11, P12) explicitly
reported greater trust in SemanticCommit over Canvas. They
cited better contextual understanding and more transparency in
the editing process as reasons for this preference. For example, P2
said, “With [Canvas] I was very skeptical. I don’t think I would trust it
without doing a full read myself. With [SemanticCommit], I trusted
it more. I felt like it seemed to understand the context better. But no
matter the tool, I need to make sure that everything was good, so I
would still read it over again.”

Despite these widespread claims of skepticism, however, partic-
ipants occasionally over-relied on both tools. As noted earlier, in
nine instances where Canvas failed to identify any conflicts, partic-
ipants accepted the output without further review. A similar pattern
emerged with SemanticCommit: five participants skipped review-
ing parts of the document that were not flagged as conflicting. This
points to a potentially risky dependency on the AI and underscores
our decision to improve recall at the expense of precision—if the
model fails to detect a conflict (false negatives), users may miss
critical issues simply because they trust the system’s silence.

7 Discussion

7.1.1 AI Agent Interfaces Should Help Users Perform Impact
Analysis. Our findings contribute to growing line of HCI research
that emphasizes proactivity, presence, and just-in-time steering in
AI agents acting on user’s behalf [15, 52, 53, 67, 77, 82, 88]. The most
surprising finding was participants’ preference for performing im-

pact analysis: finding conflicts first before making any edits. Instead
of automatically applying changes and prompting users to verify
afterward (like Canvas), this suggests AI agent systems should
encourage users to first understand the impact of the change and
only then choose to explicitly suggest and/or trigger changes. Our

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

findings indicate higher trust and satisfaction when users actively
initiate changes, reducing uncertainty and increasing perceived
control. Surprisingly, the benefits from increased control seem
to offset the cost of AI output validation, as our results on
perceived workload suggest. Not all users will use impact analysis
in every context, but highlighting what aspects of an artifact will
be considered and/or modified can help enhance user trust and
control, especially in high-stakes situations.

This bears important implications for current AI agent inter-
faces, which tend to first let the AI make changes, and then have
users validate them. For instance, in AI-powered programming
IDEs like Cursor and Visual Studio, the agent makes changes across
documents and then presents the revisions for human review. In-
stead, our findings call upon designers of AI agent systems to
provide affordances for impact analysis: helping users fore-
see the impact or location of AI changes, before necessarily
suggesting concrete changes. This reflects the principle of feed-
forward [67, 93] in communication theory—“a needed prescription
or plan for a feedback, to which the actual feedback may or may
not confirm” [79]—where a communicator provides “the context of
what one was planning to talk about” [64, p. 179-80] in order to
“pre-test the impact of [its output]” on the listener [34, p. 65]. This
returns control to the user and explicitly separates retrieval and
generation, steps which are currently conflated in many agent inter-
faces. Such an affordance might also address a growing pain-point
where unrelated data are deleted without approval.11

Note that impact analysis is not simply about pausing before
enacting a change. It is also about weighing how extensive a change
might be, the work required, and unintended side-effects. Users can
use impact analysis to back out of an in-progress change, before the
damage is done or they are overloaded by AI slop—an AI resilient [33,
35] affordance that helps users preemptively judge and respond to
AI decisions. The reflective nature of impact analysis could also
help users better understand potential conflicts, even inspire new
ideas and areas for improvement.

7.1.2 Let the User Walk the Spectrum of Control. When de-
signing mixed-initiative systems [43] where the users and AI col-
laborate, there is a trade-off between control (retaining it due to
distrust in AI) and efficiency (completely delegating). Semantic-
Commit’s affordances for adjustable autonomy [12], or blended
agency [82], enabled the user to dynamically select their preferred
balance between automation and manual oversight depending on
the context, complexity of tasks, trust in the AI, or familiarity with
the content, whereas users experienced loss of agency in the base-
line condition. This suggests that AI agent interfaces should offer
both highly controlled (step-by-step approvals like local resolution
in SemanticCommit) and streamlined (global changes) workflows
to adapt to varying user needs. Our participants appreciated de-
tailed explanations about identified conflicts and recommended
resolutions, which empowered them to make informed decisions.
Transparency also appeared to reduce anxiety and frustration, pro-
moting critical evaluation rather than passive acceptance.

11There are many examples of this, from forums (https://news.ycombinator.com/item?
id=43298275) to memes (https://x.com/daniel_nguyenx/status/1909184057755496571).

7.1.3 Start Global, Then Accelerate Local Review. We imple-
mented a range of elements into SemanticCommit, not knowing
what users would prefer. We found that though users started glob-
ally, they preferred to then make local edits, and liberally used a
range of local options—local steering, AI rewrites, etc—rather than
global steering prompts and global resolution strategies. In the base-
line Canvas condition, it was the exact opposite: users appeared
resigned to global steering in chat and became frustrated by lack of
granular control. This suggests future interfaces for semantic
conflict resolution should better support and accelerate local
review, rather than focusing on features for global steering after
the initial interaction. The workflow of 4 participants to first dis-
miss false positives, and only then focus on handling conflicts, was
also telling. Interfaces might explore explicitly separating stages of
“double-checking” AI outputs versus resolving.

7.2 Limitations
Our comparison to ChatGPT Canvas yields an informative, “best-
available” contrast, but Canvas differs from SemanticCommit in
two directions: it lets users perform arbitrary free-form edits, yet it
lacks SC’s structured memory pane. These mismatches could inflate
or deflate measured advantages. Our within-subjects study is also
subject to demand characteristics [47]. Although we counterbal-
anced order, familiarity effects or social desirability bias could still
surface. Seven participants also had previous Canvas experience,
which might bias them to trust or prefer that interface. We there-
fore interpret subjective preference data cautiously and emphasize
differences in observed workflows in our conclusions.

Another limitation is our treatment of AI memories as a list
of unweighted facts. Emerging LLM frameworks can attach meta-
data such as model confidence, provenance, or temporal scope.
Future iterations of SemanticCommit might consider color gradi-
ents computed from confidence deltas, yielding a continuous rather
than three-band classification, and resolution suggestions could be
ranked by expected reduction in global uncertainty.

7.3 Future Work and Connections
7.3.1 Interfaces and APIs for management of AI memory
of user intent. We mentioned earlier that our intention is for Se-
manticCommit to become an API that helps users make “semantic
commits”: committing ideas and details to projects like we commit
code, where the integration work is assisted by AI. Our UI was
mainly a vehicle to see what users would do, were they given full
control over the integration process. Left to their own devices to
prompt chat models, our findings show that users are prone to miss
conflicts or accept unwarranted rewrites of entire memory stores.
Developers who utilize these simple one-shot prompting methods
will be prone to similar failure modes. Tools like Claude Code pro-
vide users quick command-line directives to update memory, but
simply append the directive to the end of the intent specification [2].

What would a more assistive command-line interface for memory
updates look like? Could we automatically surface the conflicts that
users care about, anticipating and correcting misalignments before
they happen—potentially saving thousands of wasted inference
calls? As AI agent systems grow in popularity, it becomes critical
to explore interfaces and APIs that help users and developers alike

https://news.ycombinator.com/item?id=43298275
https://news.ycombinator.com/item?id=43298275
https://x.com/daniel_nguyenx/status/1909184057755496571

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

manage, inspect, and update AI memory of user intent in a manner
that is non-destructive, transparent, and controllable.

The hard question is what to do when we do not have the luxury
of a graphical UI—when intent integration is an API, part of a
larger system. When and how to raise conflicts for user review?
What rises to the level of “direct conflict” that must be addressed,
versus an ambiguity that the AI could still proceed under? This
goes back to our initial discussion on NLI and ambiguity, where
human annotators had subjective differences in resolving conflicts
[14, 49]—in many cases, these differences emerged from humans
holding different frames of reference. To align conflict detection to
specific users, we might consider two mechanisms—first, grounding
acts like request for clarification [83, 85], triggered contextually.
Vaithilingham et al. [92] suggest that the benefits of negotiation
increase with the level of abstraction: AI agents should engage
users in discussion for high-impact decisions, while avoiding it
for low-impact ones. Second, a more passive mechanism might
use memories to help model a particular user’s classification of
“conflict,” aligning it over repeated interactions [84, 87]. Future
research could investigate how to align conflict detectors to specific
humans’ ontological understanding of conflicts in their task domain. References
7.3.2 Cognitive forcing functions to mitigate over-reliance.
A line of research argues that to mitigate the risk of users becoming
complacent or overly reliant on AI, systems should incorporate
cognitive forcing functions [13, 22] —interface mechanisms that de-
liberately encourage active user involvement. In SemanticCommit,
we do this by requiring explicit user approval when a conflict is
detected or a change is made by the AI. Such mechanisms foster sus-
tained cognitive engagement and reduce the likelihood of critical
oversights resulting from blind trust in AI-generated outputs.

However, mitigation of over-reliance is not elimination. Our
work reflects the tension between automation and agency [40, 82],
embodied by our efforts to enhance recall to reduce false negatives.
Drawing user attention to conflicts—even “ambiguous conflicts”—
shows that users are liable to over-rely upon the AI to the extent of
not checking any non-marked information. One further mitigation
may be to mirror the kinds of divergences human annotators face
when detecting conflicts [14, 49] by querying multiple LLMs in
parallel and adopting a majority voting or ensembling scheme [91].
The “degree” of conflict might then correlate with consistency and
number of votes, and divergences in LLM judges could be visualized.

7.3.3 Interfaces to support requirements-oriented prompt-

ing. Ma et al. [66] introduced a process for prompting AI agents
that focuses on supporting users in creating a good initial set of
requirements. They argue that in the age of “requirements-oriented”
prompting, HCI will need to focus on training users to be good
requirements engineers. Although not entirely focused on require-
ments lists, our interface can help users update requirements to
reduce conflicts, inconsistencies, and ambiguities. Future studies
might explicitly study the performance of an AI agent following
the user’s intentions after changes are made.

7.3.4 Semantic commits for long-form writing. One of the
impetuses for this work was inspired by the challenges a coauthor
faced when performing developmental editing for a long fiction
novel. Developmental editing [72] assesses the overall content and

structure of a document with regards to consistency, plot, and flow.
Changed or removed scenes, even one-off conversations, could
have impacts much later in a novel, and an author must keep all
of this information in their head or manually reread to detect in-
consistencies. A review by Zhao et al. [102] found that little HCI
research focused on helping writers perform developmental editing.
In the future, NLI-like AI-powered interfaces might help writers of
long documents detect and resolve inconsistencies that emerge as a
result of revisions. Much like Portrayal [42] shows writers birds-eye
views of characters across a novel, might a similar interface help
users to visualize “plot holes”? Our work suggests these semantic
commit interfaces should heavily prioritize recall over precision, as
a missed conflict across a 100k+ word novel may be catastrophic,
compared to lightly reviewing false positives.

Acknowledgments
We would like to thank Professor Jin L. C. Guo for the helpful
pointer to impact analysis literature in software engineering.

[1] LangChain AI. 2025. LangMem. https://langchain-ai.github.io/langmem/ Ac-
cessed: 2025-04-07.

[2] Anthropic. 2025. Claude 3.7 Sonnet and Claude Code. https://www.anthropic.
com/news/claude-3-7-sonnet. Accessed: 2025-04-07.

[3] Grigoris Antoniou and Frank van Harmelen. 2004. Web Ontology Language:
OWL. Springer Berlin Heidelberg, Berlin, Heidelberg, 67–92. doi:10.1007/978-
3-540-24750-0_4

[4] Ian Arawjo. 2020. To Write Code: The Cultural Fabrication of Programming
Notation and Practice. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–15. doi:10.1145/3313831.3376731

[5] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and
Elena L. Glassman. 2024. ChainForge: A Visual Toolkit for Prompt Engineering
and LLM Hypothesis Testing. In Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association
for Computing Machinery, New York, NY, USA, Article 304, 18 pages. doi:10.
1145/3613904.3642016

[6] Robert S. Arnold. 1996. Software Change Impact Analysis. IEEE Computer
Society Press, Washington, DC, USA.

[7] Chetan Arora, John Grundy, and Mohamed Abdelrazek. 2024. Advancing Require-
ments Engineering Through Generative AI: Assessing the Role of LLMs. Springer
Nature Switzerland, Cham, 129–148. doi:10.1007/978-3-031-55642-5_6

[8] Gagan Bansal, Jennifer Wortman Vaughan, Saleema Amershi, Eric Horvitz,
Adam Fourney, Hussein Mozannar, Victor Dibia, and Daniel S. Weld. 2024.
Challenges in Human-Agent Communication. arXiv:2412.10380 [cs.HC] https:
//arxiv.org/abs/2412.10380

[9] Stafford Beer. 2002. What is cybernetics? Kybernetes 31, 2 (2002), 209–219.
[10] Thomas Berlage. 1994. A selective undo mechanism for graphical user interfaces

based on command objects. ACM Trans. Comput.-Hum. Interact. 1, 3 (Sept. 1994),
269–294. doi:10.1145/196699.196721

[11] Guy A. Boy. 1997. Active design documents. In Proceedings of the 2nd Conference
on Designing Interactive Systems: Processes, Practices, Methods, and Techniques
(Amsterdam, The Netherlands) (DIS ’97). Association for Computing Machinery,
New York, NY, USA, 31–36. doi:10.1145/263552.263572

[12] Jeffrey M. Bradshaw, Paul J. Feltovich, Hyuckchul Jung, Shriniwas Kulkarni,
William Taysom, and Andrzej Uszok. 2004. Dimensions of Adjustable Auton-
omy and Mixed-Initiative Interaction. In Agents and Computational Autonomy,
Matthias Nickles, Michael Rovatsos, and Gerhard Weiss (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 17–39.

[13] Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z Gajos. 2021. To trust or to
think: cognitive forcing functions can reduce overreliance on AI in AI-assisted
decision-making. Proceedings of the ACM on Human-computer Interaction 5,
CSCW1 (2021), 1–21.

[14] Sihao Chen, Chaitanya Malaviya, Alex Fabrikant, Hagai Taitelbaum, Tal Schus-
ter, Senaka Buthpitiya, and Dan Roth. 2025. On Reference (In-)Determinacy in
Natural Language Inference. In Findings of the Association for Computational
Linguistics: NAACL 2025, Luis Chiruzzo, Alan Ritter, and Lu Wang (Eds.). Asso-
ciation for Computational Linguistics, Albuquerque, New Mexico, 8066–8078.
doi:10.18653/v1/2025.findings-naacl.450

https://langchain-ai.github.io/langmem/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1145/3313831.3376731
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1145/3613904.3642016
https://doi.org/10.1007/978-3-031-55642-5_6
https://arxiv.org/abs/2412.10380
https://arxiv.org/abs/2412.10380
https://arxiv.org/abs/2412.10380
https://doi.org/10.1145/196699.196721
https://doi.org/10.1145/263552.263572
https://doi.org/10.18653/v1/2025.findings-naacl.450

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

[15] Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag,
and Ameet Talwalkar. 2025. Need Help? Designing Proactive AI Assistants for
Programming. In Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems (CHI ’25). Association for Computing Machinery, New York,
NY, USA, Article 881, 18 pages. doi:10.1145/3706598.3714002

[16] Furui Cheng, Vilém Zouhar, Simran Arora, Mrinmaya Sachan, Hendrik Strobelt,
and Mennatallah El-Assady. 2024. RELIC: Investigating Large Language Model
Responses using Self-Consistency. In Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association
for Computing Machinery, New York, NY, USA, Article 647, 18 pages. doi:10.
1145/3613904.3641904

[17] John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Eytan
Adar, and Minsuk Chang. 2022. TaleBrush: Sketching Stories with Generative
Pretrained Language Models. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 209, 19 pages. doi:10.
1145/3491102.3501819

[18] Elizabeth Clark, Anne Spencer Ross, Chenhao Tan, Yangfeng Ji, and Noah A.
Smith. 2018. Creative Writing with a Machine in the Loop: Case Studies on Slo-
gans and Stories. In Proceedings of the 23rd International Conference on Intelligent
User Interfaces (Tokyo, Japan) (IUI ’18). Association for Computing Machinery,
New York, NY, USA, 329–340. doi:10.1145/3172944.3172983

[19] Herbert H. Clark and Susan E. Brennan. 1991. Grounding in communication.
American Psychological Association, USA, 127–149. doi:10.1037/10096-006

[20] Richard Colby and Rebekah Shultz Colby. 2019. Game design documentation:
Four perspectives from independent game studios. Communication Design
Quarterly Review 7, 3 (2019), 5–15.

[21] Cursor Documentation Team. 2025. Rules for AI. Cursor. https://docs.cursor.
com/context/rules-for-ai Accessed: 2025-04-08.

[22] Sander de Jong, Ville Paananen, Benjamin Tag, and Niels van Berkel. 2025.
Cognitive Forcing for Better Decision-Making: Reducing Overreliance on AI
Systems Through Partial Explanations. Proc. ACM Hum.-Comput. Interact. 9, 2,
Article CSCW048 (May 2025), 30 pages. doi:10.1145/3710946

[23] Diego Dermeval, Jéssyka Vilela, Ig Ibert Bittencourt, Jaelson Castro, Seiji Isotani,
Patrick Brito, and Alan Silva. 2016. Applications of ontologies in requirements
engineering: a systematic review of the literature. Requirements engineering 21
(2016), 405–437.

[24] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of software:
Evolution and Process 25, 1 (2013), 53–95.

[25] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva
Mody, Steven Truitt, Dasha Metropolitansky, Robert Osazuwa Ness, and
Jonathan Larson. 2024. From Local to Global: A Graph RAG Approach to
Query-Focused Summarization. arXiv:arXiv:2404.16130

[26] Hongfei Fan and Chengzheng Sun. 2012. Supporting semantic conflict pre-
vention in real-time collaborative programming environments. ACM SIGAPP
Applied Computing Review 12, 2 (2012), 39–52.

[27] Alessandro Fantechi, Stefania Gnesi, Lucia Passaro, and Laura Semini. 2023.
Inconsistency Detection in Natural Language Requirements using ChatGPT: a
Preliminary Evaluation. In 2023 IEEE 31st International Requirements Engineering
Conference (RE). IEEE, Germany, 335–340. doi:10.1109/RE57278.2023.00045

[28] Mohamad Fazelnia, Viktoria Koscinski, Spencer Herzog, and Mehdi Mirakhorli.
2024. Lessons from the Use of Natural Language Inference (NLI) in Requirements
Engineering Tasks . In 2024 IEEE 32nd International Requirements Engineering
Conference (RE). IEEE Computer Society, Los Alamitos, CA, USA, 103–115.
doi:10.1109/RE59067.2024.00020

[29] K. J. Kevin Feng, Kevin Pu, Matt Latzke, Tal August, Pao Siangliulue, Jonathan
Bragg, Daniel S. Weld, Amy X. Zhang, and Joseph Chee Chang. 2024. Cocoa:
Co-Planning and Co-Execution with AI Agents. arXiv:2412.10999 [cs.HC]
https://arxiv.org/abs/2412.10999

[30] Mayara C. Figueiredo and Cleidson R. B. de Souza. 2012. Wolf: supporting
impact analysis activities in distributed software development. In Proceedings of
the 5th International Workshop on Co-Operative and Human Aspects of Software
Engineering (CHASE ’12). IEEE Press, Zurich, Switzerland, 40–46.

[31] David Fox. 1986. Labyrinth. Internal game design document, Lucasfilm Ltd.
Games Division. Game design document of an unpublished game Labyrinth
by LucasArts in the 1908s related to the film of the same name. This document
was accessed via Web Archive at the url: http://www.wilmunder.com/Arics_
World/Games_files/.

[32] Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. 2017. Hafez:
an Interactive Poetry Generation System. In Proceedings of ACL 2017, System
Demonstrations, Mohit Bansal and Heng Ji (Eds.). Association for Computational
Linguistics, Vancouver, Canada, 43–48. https://aclanthology.org/P17-4008/

[33] Elena L. Glassman, Ziwei Gu, and Jonathan K. Kummerfeld. 2024. AI-Resilient
Interfaces. arXiv:arXiv:2405.08447

[34] EM Griffin. 2006. A first look at communication theory. McGraw-hill, USA.
[35] Ziwei Gu, Ian Arawjo, Kenneth Li, Jonathan K. Kummerfeld, and Elena L. Glass-

man. 2024. An AI-Resilient Text Rendering Technique for Reading and Skimming

Documents. In Proceedings of the 2024 CHI Conference on Human Factors in Com-

puting Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Ma-
chinery, New York, NY, USA, Article 898, 22 pages. doi:10.1145/3613904.3642699

[36] Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu
Su. 2025. HippoRAG: neurobiologically inspired long-term memory for large
language models. In Proceedings of the 38th International Conference on Neural
Information Processing Systems (Vancouver, BC, Canada) (NIPS ’24). Curran
Associates Inc., Red Hook, NY, USA, Article 1902, 38 pages.

[37] ZHU Haibin. 2005. Conflict resolution with roles in a collaborative system.
International Journal of Intelligent Control and Systems 10, 1 (2005), 11–20.

[38] J. Han. 1997. Supporting impact analysis and change propagation in software
engineering environments. In Proceedings Eighth IEEE International Workshop
on Software Technology and Engineering Practice incorporating Computer Aided
Software Engineering. IEEE, Australia, 172–182. doi:10.1109/STEP.1997.615479

[39] Rex Hartson and Pardha Pyla. 2012. The UX Book: Process and Guidelines for
Ensuring a Quality User Experience (1st ed.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[40] Jeffrey Heer. 2019. Agency plus automation: Designing artificial intelligence
into interactive systems. Proceedings of the National Academy of Sciences 116, 6
(2019), 1844–1850.

[41] Jeffrey Heer, Joseph M Hellerstein, and Sean Kandel. 2015. Predictive Interaction
for Data Transformation.. In CIDR. Citeseer, CIDR, Asilomar, California, 1–7.

[42] Md Naimul Hoque, Bhavya Ghai, Kari Kraus, and Niklas Elmqvist. 2023. Por-
trayal: Leveraging NLP and Visualization for Analyzing Fictional Characters.
In Proceedings of the 2023 ACM Designing Interactive Systems Conference (Pitts-
burgh, PA, USA) (DIS ’23). Association for Computing Machinery, New York,
NY, USA, 74–94. doi:10.1145/3563657.3596000

[43] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Pittsburgh,
Pennsylvania, USA) (CHI ’99). Association for Computing Machinery, New York,
NY, USA, 159–166. doi:10.1145/302979.303030

[44] Yuki Hou, Haruki Tamoto, and Homei Miyashita. 2024. "My agent understands
me better": Integrating Dynamic Human-like Memory Recall and Consolidation
in LLM-Based Agents. In Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’24). Association
for Computing Machinery, New York, NY, USA, Article 7, 7 pages. doi:10.1145/
3613905.3650839

[45] Shang-Hsien Hsieh, Hsien-Tang Lin, Nai-Wen Chi, Kuang-Wu Chou, and Ken-Yu
Lin. 2011. Enabling the development of base domain ontology through extraction
of knowledge from engineering domain handbooks. Advanced Engineering
Informatics 25, 2 (2011), 288–296. doi:10.1016/j.aei.2010.08.004 Information
mining and retrieval in design.

[46] James Wayne Hunt and M Douglas MacIlroy. 1976. An algorithm for differential
file comparison. Bell Laboratories Murray Hill, USA.

[47] Olga Iarygina, Kasper Hornbæk, and Aske Mottelson. 2025. Demand characteris-
tics in human–computer experiments. International Journal of Human-Computer
Studies 193 (2025), 103379. doi:10.1016/j.ijhcs.2024.103379

[48] Instructor Python API. 2025. Instructor Repository: .cursor/rules Directory.
https://github.com/instructor-ai/instructor/tree/main/.cursor/rules Accessed:
2025-03-29.

[49] Nan-Jiang Jiang and Marie-Catherine de Marneffe. 2022. Investigating reasons
for disagreement in natural language inference. Transactions of the Association
for Computational Linguistics 10 (2022), 1357–1374.

[50] Per Jönsson and Mikael Lindvall. 2005. Impact Analysis. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 117–142. doi:10.1007/3-540-28244-0_6

[51] Haruhiko Kaiya and Motoshi Saeki. 2006. Using Domain Ontology as Domain
Knowledge for Requirements Elicitation. In 14th IEEE International Requirements
Engineering Conference (RE’06). IEEE, St. Paul, MN, USA, 189–198. doi:10.1109/
RE.2006.72

[52] Majeed Kazemitabaar, Oliver Huang, Sangho Suh, Austin Z Henley, and Tovi
Grossman. 2025. Exploring the Design Space of Cognitive Engagement Tech-
niques with AI-Generated Code for Enhanced Learning. In Proceedings of the
30th International Conference on Intelligent User Interfaces (IUI ’25). Association
for Computing Machinery, New York, NY, USA, 695–714. doi:10.1145/3708359.
3712104

[53] Majeed Kazemitabaar, Jack Williams, Ian Drosos, Tovi Grossman, Austin Zachary
Henley, Carina Negreanu, and Advait Sarkar. 2024. Improving Steering and
Verification in AI-Assisted Data Analysis with Interactive Task Decomposition.
In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing
Machinery, New York, NY, USA, Article 92, 19 pages. doi:10.1145/3654777.
3676345

[54] Tae Kim. 2018. Warren Buffett says bitcoin is ’probably rat poison
squared’. https://www.cnbc.com/2018/05/05/warren-buffett-says-bitcoin-is-
probably-rat-poison-squared.html Updated: 2018-05-06.

[55] Clemens Nylandsted Klokmose, James R. Eagan, and Peter van Hardenberg. 2024.
MyWebstrates: Webstrates as Local-first Software. In Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology (Pittsburgh,

https://doi.org/10.1145/3706598.3714002
https://doi.org/10.1145/3613904.3641904
https://doi.org/10.1145/3613904.3641904
https://doi.org/10.1145/3491102.3501819
https://doi.org/10.1145/3491102.3501819
https://doi.org/10.1145/3172944.3172983
https://doi.org/10.1037/10096-006
https://docs.cursor.com/context/rules-for-ai
https://docs.cursor.com/context/rules-for-ai
https://doi.org/10.1145/3710946
https://arxiv.org/abs/arXiv:2404.16130
https://doi.org/10.1109/RE57278.2023.00045
https://doi.org/10.1109/RE59067.2024.00020
https://arxiv.org/abs/2412.10999
https://arxiv.org/abs/2412.10999
http://www.wilmunder.com/Arics_World/Games_files/
http://www.wilmunder.com/Arics_World/Games_files/
https://aclanthology.org/P17-4008/
https://arxiv.org/abs/arXiv:2405.08447
https://doi.org/10.1145/3613904.3642699
https://doi.org/10.1109/STEP.1997.615479
https://doi.org/10.1145/3563657.3596000
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3613905.3650839
https://doi.org/10.1145/3613905.3650839
https://doi.org/10.1016/j.aei.2010.08.004
https://doi.org/10.1016/j.ijhcs.2024.103379
https://github.com/instructor-ai/instructor/tree/main/.cursor/rules
https://doi.org/10.1007/3-540-28244-0_6
https://doi.org/10.1109/RE.2006.72
https://doi.org/10.1109/RE.2006.72
https://doi.org/10.1145/3708359.3712104
https://doi.org/10.1145/3708359.3712104
https://doi.org/10.1145/3654777.3676345
https://doi.org/10.1145/3654777.3676345
https://www.cnbc.com/2018/05/05/warren-buffett-says-bitcoin-is-probably-rat-poison-squared.html
https://www.cnbc.com/2018/05/05/warren-buffett-says-bitcoin-is-probably-rat-poison-squared.html

Semantic Commit: Helping Users Update Intent Specifications for AI Memory at Scale UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

PA, USA) (UIST ’24). Association for Computing Machinery, New York, NY, USA,
Article 42, 12 pages. doi:10.1145/3654777.3676445

[56] Philippe Laban, Jesse Vig, Marti Hearst, Caiming Xiong, and Chien-Sheng Wu.
2024. Beyond the Chat: Executable and Verifiable Text-Editing with LLMs.
In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing
Machinery, New York, NY, USA, Article 20, 23 pages. doi:10.1145/3654777.
3676419

[57] Nancy G. Leveson. 2000. System Safety in Computer-Controlled Automotive
Systems. SAE Transactions 109 (2000), 287–294. http://www.jstor.org/stable/
44699139

[58] Jingyi Li, Eric Rawn, Jacob Ritchie, Jasper Tran O’Leary, and Sean Follmer. 2023.
Beyond the Artifact: Power as a Lens for Creativity Support Tools. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology
(San Francisco, CA, USA) (UIST ’23). Association for Computing Machinery,
New York, NY, USA, Article 47, 15 pages. doi:10.1145/3586183.3606831

[59] Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. 2009. Why and why not
explanations improve the intelligibility of context-aware intelligent systems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, MA, USA) (CHI ’09). Association for Computing Machinery, New York,
NY, USA, 2119–2128. doi:10.1145/1518701.1519023

[60] Susan Lin, Jeremy Warner, J.D. Zamfirescu-Pereira, Matthew G Lee, Sauhard
Jain, Shanqing Cai, Piyawat Lertvittayakumjorn, Michael Xuelin Huang, Shumin
Zhai, Bjoern Hartmann, and Can Liu. 2024. Rambler: Supporting Writing With
Speech via LLM-Assisted Gist Manipulation. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
’24). Association for Computing Machinery, New York, NY, USA, Article 1043,
19 pages. doi:10.1145/3613904.3642217

[61] Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter Van Hardenberg. 2022.
Peritext: A crdt for collaborative rich text editing. Proceedings of the ACM on
Human-Computer Interaction 6, CSCW2 (2022), 1–36.

[62] Michael Xieyang Liu, Tongshuang Wu, Tianying Chen, Franklin Mingzhe Li,
Aniket Kittur, and Brad A Myers. 2024. Selenite: Scaffolding Online Sensemak-
ing with Comprehensive Overviews Elicited from Large Language Models. In
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems
(Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York,
NY, USA, Article 837, 26 pages. doi:10.1145/3613904.3642149

[63] Diana Loeffler, Anne Hess, Andreas Maier, Joern Hurtienne, and Hartmut
Schmitt. 2013. Developing intuitive user interfaces by integrating users’ mental
models into requirements engineering. In Proceedings of the 27th International
BCS Human Computer Interaction Conference (London, UK) (BCS-HCI ’13). BCS
Learning & Development Ltd., Swindon, GBR, Article 15, 10 pages.

[64] Robert K Logan. 2015. Feedforward, IA Richards, Cybernetics and Marshall
McLuhan. Systema: Connecting Catter, Life, Culture and Technology 3, 1 (2015),
177–185.

[65] Sebastian Lubos, Alexander Felfernig, {Thi Ngoc Trang} Tran, Damian Garber,
Merfat {El Mansi}, {Seda Polat} Erdeniz, and {Viet Man} Le. 2024. Leveraging
LLMs for the Quality Assurance of Software Requirements. In Proceedings -
32nd IEEE International Requirements Engineering Conference, RE 2024, Grischa
Liebel, Irit Hadar, and Paola Spoletini (Eds.). IEEE Computer Society, United
States, 389–397. doi:10.1109/RE59067.2024.00046 Publisher Copyright: © 2024
IEEE.; 32nd IEEE International Requirements Engineering Conference : RE 2024
; Conference date: 24-06-2024 Through 28-06-2024.

[66] Qianou Ma, Weirui Peng, Chenyang Yang, Hua Shen, Kenneth Koedinger, and
Tongshuang Wu. 2024. What Should We Engineer in Prompts? Training Humans
in Requirement-Driven LLM Use. arXiv:2409.08775 [cs.HC] https://arxiv.org/
abs/2409.08775

[67] Bryan Min and Haijun Xia. 2025. Feedforward in Generative AI: Opportunities
for a Design Space. arXiv:arXiv:2502.14229

[68] Piotr Mirowski, Kory W. Mathewson, Jaylen Pittman, and Richard Evans. 2023.
Co-Writing Screenplays and Theatre Scripts with Language Models: Evaluation
by Industry Professionals. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for
Computing Machinery, New York, NY, USA, Article 355, 34 pages. doi:10.1145/
3544548.3581225

[69] Robert B Musburger. 2017. Animation production: documentation and organiza-
tion. CRC Press, Boca Raton, FL.

[70] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny
Dig. 2019. The life-cycle of merge conflicts: processes, barriers, and strategies.
Empirical Software Engineering 24 (2019), 2863–2906.

[71] Jakob Nielsen. 1994. Enhancing the explanatory power of usability heuristics.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, Massachusetts, USA) (CHI ’94). Association for Computing Machinery,
New York, NY, USA, 152–158. doi:10.1145/191666.191729

[72] Scott Norton. 2009. Developmental editing: a handbook for freelancers, authors,
and publishers. University of Chicago Press, Chicago, USA.

[73] OpenAI. 2024. Memory and new controls for ChatGPT. https://openai.com/
index/memory-and-new-controls-for-chatgpt/ Accessed: 2025-04-07.

[74] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).
Association for Computing Machinery, New York, NY, USA, Article 2, 22 pages.
doi:10.1145/3586183.3606763

[75] S.H. Phatak and B.R. Badrinath. 1999. Conflict resolution and reconciliation
in disconnected databases. In Proceedings. Tenth International Workshop on
Database and Expert Systems Applications. DEXA 99. IEEE, Florence, Italy, 76–81.
doi:10.1109/DEXA.1999.795148

[76] Git Project. 2025. Git: Fast Version Control System. https://git-scm.com/
Accessed: 24 Jan. 2025.

[77] Kevin Pu, Daniel Lazaro, Ian Arawjo, Haijun Xia, Ziang Xiao, Tovi Grossman,
and Yan Chen. 2025. Assistance or Disruption? Exploring and Evaluating the
Design and Trade-offs of Proactive AI Programming Support. In Proceedings
of the 2025 CHI Conference on Human Factors in Computing Systems (CHI ’25).
Association for Computing Machinery, New York, NY, USA, Article 152, 21 pages.
doi:10.1145/3706598.3713357

[78] Reddit. 2024. The hidden Claude system prompt (on the Artefacts system, new re-
sponse styles, thinking tags, and more...). https://www.reddit.com/r/ClaudeAI/
comments/1hb3evv/the_hidden_claude_system_prompt_on_the_artefacts/ Ac-
cessed: 2025-04-02.

[79] Ivor A Richards. 1968. The secret of feedforward. Saturday Review 3 (1968),
14–17.

[80] Diana Robinson, Christian Cabrera, Andrew D. Gordon, Neil D. Lawrence, and
Lars Mennen. 2024. Requirements are All You Need: The Final Frontier for
End-User Software Engineering. arXiv:arXiv:2405.13708

[81] Advait Sarkar. 2024. Intention Is All You Need. arXiv:arXiv:2410.18851
[82] Arvind Satyanarayan and Graham M. Jones. 2024. Intelligence as Agency:

Evaluating the Capacity of Generative AI to Empower or Constrain Human
Action. https://mit-genai.pubpub.org/pub/94y6e0f8.

[83] Omar Shaikh, Kristina Gligoric, Ashna Khetan, Matthias Gerstgrasser, Diyi
Yang, and Dan Jurafsky. 2024. Grounding Gaps in Language Model Genera-
tions. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), Kevin Duh, Helena Gomez, and Steven Bethard (Eds.).
Association for Computational Linguistics, Mexico City, Mexico, 6279–6296.
doi:10.18653/v1/2024.naacl-long.348

[84] Omar Shaikh, Michelle Lam, Joey Hejna, Yijia Shao, Michael Bernstein, and Diyi
Yang. 2024. Show, Don’t Tell: Aligning Language Models with Demonstrated
Feedback. arXiv:2406.00888 [cs.CL]

[85] Omar Shaikh, Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric
Horvitz. 2025. Navigating Rifts in Human-LLM Grounding: Study and Bench-
mark. arXiv:2503.13975 [cs.CL] https://arxiv.org/abs/2503.13975

[86] Omar Shaikh, Shardul Sapkota, Shan Rizvi, Eric Horvitz, Joon Sung Park, Diyi
Yang, and Michael S. Bernstein. 2025. Creating General User Models from
Computer Use. arXiv:arXiv:2505.10831

[87] Shreya Shankar, J.D. Zamfirescu-Pereira, Bjoern Hartmann, Aditya
Parameswaran, and Ian Arawjo. 2024. Who Validates the Validators?
Aligning LLM-Assisted Evaluation of LLM Outputs with Human Prefer-
ences. In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology (Pittsburgh, PA, USA) (UIST ’24). Association
for Computing Machinery, New York, NY, USA, Article 131, 14 pages.
doi:10.1145/3654777.3676450

[88] Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang, and Diyi Yang. 2024. Col-
laborative Gym: A Framework for Enabling and Evaluating Human-Agent
Collaboration.

[89] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The Metacognitive Demands and
Opportunities of Generative AI. In Proceedings of the 2024 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association
for Computing Machinery, New York, NY, USA, Article 680, 24 pages. doi:10.
1145/3613904.3642902

[90] Valerio Terragni, Annie Vella, Partha Roop, and Kelly Blincoe. 2025. The Future
of AI-Driven Software Engineering. ACM Trans. Softw. Eng. Methodol. 34, 5,
Article 120 (May 2025), 20 pages. doi:10.1145/3715003

[91] Yu-Min Tseng, Yu-Chao Huang, Teng-Yun Hsiao, Wei-Lin Chen, Chao-Wei
Huang, Yu Meng, and Yun-Nung Chen. 2024. Two Tales of Persona in LLMs:
A Survey of Role-Playing and Personalization. In Findings of the Association
for Computational Linguistics: EMNLP 2024, Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (Eds.). Association for Computational Linguistics, Miami,
Florida, USA, 16612–16631. doi:10.18653/v1/2024.findings-emnlp.969

[92] Priyan Vaithilingam, Ian Arawjo, and Elena L. Glassman. 2024. Imagining a Fu-
ture of Designing with AI: Dynamic Grounding, Constructive Negotiation, and
Sustainable Motivation. In Proceedings of the 2024 ACM Designing Interactive Sys-
tems Conference (Copenhagen, Denmark) (DIS ’24). Association for Computing
Machinery, New York, NY, USA, 289–300. doi:10.1145/3643834.3661525

https://doi.org/10.1145/3654777.3676445
https://doi.org/10.1145/3654777.3676419
https://doi.org/10.1145/3654777.3676419
http://www.jstor.org/stable/44699139
http://www.jstor.org/stable/44699139
https://doi.org/10.1145/3586183.3606831
https://doi.org/10.1145/1518701.1519023
https://doi.org/10.1145/3613904.3642217
https://doi.org/10.1145/3613904.3642149
https://doi.org/10.1109/RE59067.2024.00046
https://arxiv.org/abs/2409.08775
https://arxiv.org/abs/2409.08775
https://arxiv.org/abs/2409.08775
https://arxiv.org/abs/arXiv:2502.14229
https://doi.org/10.1145/3544548.3581225
https://doi.org/10.1145/3544548.3581225
https://doi.org/10.1145/191666.191729
https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://openai.com/index/memory-and-new-controls-for-chatgpt/
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1109/DEXA.1999.795148
https://git-scm.com/
https://doi.org/10.1145/3706598.3713357
https://www.reddit.com/r/ClaudeAI/comments/1hb3evv/the_hidden_claude_system_prompt_on_the_artefacts/
https://www.reddit.com/r/ClaudeAI/comments/1hb3evv/the_hidden_claude_system_prompt_on_the_artefacts/
https://arxiv.org/abs/arXiv:2405.13708
https://arxiv.org/abs/arXiv:2410.18851
https://doi.org/10.18653/v1/2024.naacl-long.348
https://arxiv.org/abs/2406.00888
https://arxiv.org/abs/2503.13975
https://arxiv.org/abs/2503.13975
https://arxiv.org/abs/arXiv:2505.10831
https://doi.org/10.1145/3654777.3676450
https://doi.org/10.1145/3613904.3642902
https://doi.org/10.1145/3613904.3642902
https://doi.org/10.1145/3715003
https://doi.org/10.18653/v1/2024.findings-emnlp.969
https://doi.org/10.1145/3643834.3661525
https://mit-genai.pubpub.org/pub/94y6e0f8

UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea Vaithilingam et al.

[93] Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Cross-
ing the bridge over Norman’s Gulf of Execution: revealing feedforward’s true
identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New
York, NY, USA, 1931–1940. doi:10.1145/2470654.2466255

[94] Thiemo Wambsganss, Christina Niklaus, Matthias Cetto, Matthias Söllner,
Siegfried Handschuh, and Jan Marco Leimeister. 2020. AL: An Adaptive
Learning Support System for Argumentation Skills. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–14.
doi:10.1145/3313831.3376732

[95] Xinru Wang, Hannah Kim, Sajjadur Rahman, Kushan Mitra, and Zhengjie Miao.
2024. Human-LLM Collaborative Annotation Through Effective Verification
of LLM Labels. In Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing
Machinery, New York, NY, USA, Article 303, 21 pages. doi:10.1145/3613904.
3641960

[96] Cat Wu. 2025. Press # to instruct Claude Code to add a memory. Then, type
your memory and hit Enter to add it to the CLAUDE.md file. https://x.com/
_catwu/status/1904941906867413054 Tweet by the Product Designer of Claude
Code..

[97] Ryan Yen and Jian Zhao. 2024. Memolet: Reifying the Reuse of User-AI Con-
versational Memories. In Proceedings of the 37th Annual ACM Symposium on
User Interface Software and Technology (Pittsburgh, PA, USA) (UIST ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 58, 22 pages.

doi:10.1145/3654777.3676388
[98] Young Seok Yoon and Brad A. Myers. 2015. Supporting selective undo in a code

editor. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (ICSE ’15). IEEE Press, Florence, Italy, 223–233.

[99] Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. 2022. Wordcraft:
Story Writing With Large Language Models. In Proceedings of the 27th In-
ternational Conference on Intelligent User Interfaces (Helsinki, Finland) (IUI
’22). Association for Computing Machinery, New York, NY, USA, 841–852.
doi:10.1145/3490099.3511105

[100] J.D. Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, and Bjoern
Hartmann. 2025. Beyond Code Generation: LLM-supported Exploration of the
Program Design Space. In Proceedings of the 2025 CHI Conference on Human
Factors in Computing Systems (CHI ’25). Association for Computing Machinery,
New York, NY, USA, Article 153, 17 pages. doi:10.1145/3706598.3714154

[101] Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR:
A Human-AI Argumentative Writing Assistant with Visual Programming and
Rapid Draft Prototyping. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).
Association for Computing Machinery, New York, NY, USA, Article 5, 30 pages.
doi:10.1145/3586183.3606800

[102] Zixin Zhao, Damien Masson, Young-Ho Kim, Gerald Penn, and Fanny Chevalier.
2025. Making the Write Connections: Linking Writing Support Tools with
Writer Needs. In Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems (CHI ’25). Association for Computing Machinery, New York,
NY, USA, Article 1216, 21 pages. doi:10.1145/3706598.3713161

https://doi.org/10.1145/2470654.2466255
https://doi.org/10.1145/3313831.3376732
https://doi.org/10.1145/3613904.3641960
https://doi.org/10.1145/3613904.3641960
https://x.com/_catwu/status/1904941906867413054
https://x.com/_catwu/status/1904941906867413054
https://doi.org/10.1145/3654777.3676388
https://doi.org/10.1145/3490099.3511105
https://doi.org/10.1145/3706598.3714154
https://doi.org/10.1145/3586183.3606800
https://doi.org/10.1145/3706598.3713161
https://CLAUDE.md

	Abstract
	1 Introduction
	2 Motivation: Intent Specifications Ground Human Coordination with AI Agents
	2.1 Related Work

	3 Design Goals
	3.1 Early Prototype and Pilot Feedback

	4 SemanticCommit User Interface
	4.1 Walkthrough of Usage
	4.2 Implementation

	5 Back-End for Semantic Conflict Detection
	5.1 Technical Evaluation

	6 User study
	6.1 Findings

	7 Discussion
	7.1 Implications
	7.2 Limitations
	7.3 Future Work and Connections

	Acknowledgments
	References

