
Foobaz: Variable Name Feedback for Student Code
at Scale

Elena L. Glassman, Lyla Fischer, Jeremy Scott, Robert C. Miller
MIT CSAIL

Cambridge, MA USA
{elg, fischerl, jks, rcm}@mit.edu

ABSTRACT
Current traditional feedback methods, such as hand-grading
student code for substance and style, are labor intensive and
do not scale. We created a user interface that addresses feed-
back at scale for a particular and important aspect of code
quality: variable names. We built this user interface on top
of an existing back-end that distinguishes variables by their
behavior in the program. Therefore our interface not only
allows teachers to comment on poor variable names, they
can comment on names that mislead the reader about the
variable’s role in the program. We ran two user studies in
which 10 teachers and 6 students created and received feed-
back, respectively. The interface helped teachers give person-
alized variable name feedback on thousands of student so-
lutions from an edX introductory programming MOOC. In
the second study, students composed solutions to the same
programming assignments and immediately received person-
alized quizzes composed by teachers in the previous user
study.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g., HCI):
Miscellaneous

Author Keywords
computer science education; variable naming; user interface
design; learning at scale

INTRODUCTION
Current traditional feedback methods for solutions to pro-
gramming assignments include hand-grading student code for
substance and style. Unfortunately, those methods are la-
bor intensive, potentially inconsistent across graders, and do
not scale to the sizes associated with Massive Open Online
Courses (MOOCs). The scaling difficulty is particularly im-
portant when considering that some residential course enroll-
ments at prominent universities, like UC Berkeley’s CS61A,
are rising above the thousand-student mark [9]. Some Com-
puter Science teachers, such as MIT’s John Guttag and Ana

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST ’15, November 08–11, 2015, Charlotte, NC, USA.
Copyright © is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3779-3/15/11$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807495

Bell, are simultaneously teaching hundreds of students in res-
idential programming courses and thousands of online stu-
dents in MOOC versions.

Variable naming is a specific, important aspect of writing
readable, maintainable code, and many teachers want to give
feedback on it. The quality of a name is most easily judged
when its role within the surrounding code is known. How-
ever, at scale, teachers cannot read every solution. Program-
ming education at scale opens up new challenges for process-
ing and presenting thousands of solutions so that teachers can
more easily view them. Teachers also cannot write comments
on each solution. This difficulty motivates the creation of
tools that help teachers give customized feedback to subsets
of students for whom that feedback is relevant.

We introduce Foobaz, a user interface for giving tailored feed-
back on student variable names at scale. Foobaz enables
teachers to explore and comment on the quality of student-
chosen variable names, given the role the variables play in
students’ code (see Figure 1). A variable’s role is a function
of the sequence of values that the variable contains during
program execution. The variety of student-chosen variable
names for each role makes evaluating every one prohibitive.
Using Foobaz, the teacher can label a small subset of good
and bad names for each role.

Foobaz then uses these labeled variable names to create ped-
agogically valuable active learning exercises in the format of
multiple choice quizzes. These quizzes are a form of feed-
back for many more students than just those whose variable
names receive a teacher’s label. The quizzes also allow stu-
dents to see examples of good and bad alternatives, rather
than just receive a label on one of their own names.

Foobaz personalizes teacher quizzes for each student, so that
students can consider good and bad names for variables that
exist in their own solutions. Personalized quizzes render the
student’s original code submission with a specific variable re-
placed by an arbitrary symbol. The quiz presents the student
with several variable names as candidate replacements for the
symbol, one of which may be the student’s original choice.
The student selects appropriate labels for the variable names
before checking their labels against teacher labels and com-
ments.

In two user studies, we demonstrate the capabilities and work-
flow enabled by this novel interface for both teachers and stu-
dents. In the first study, we show that the interface helped
teachers give personalized variable name feedback on thou-

Figure 1. The Foobaz teacher interface. The teacher is presented with a scrollable list of normalized solutions, each followed by a table of alternative
variable names. Each column of the table represents the variables occurring in the solution. Each table’s rows contain unique sets of student-chosen
names for the variables in the solution. Some names shown here have been labeled by the teacher as “misleading or vague,” “too short,” or “fine.”

sands of student solutions from an introductory programming
MOOC on edX. In the second study, students composed solu-
tions to the same programming exercises and we capture their
reactions to the quizzes generated with Foobaz by teachers in
the first study.

This paper makes the following contributions:

• a technique for displaying clusters of code with only a slice
of each cluster exposed, revealing the features that are rel-
evant to the task. In this application, the relevant features
are variable names and roles.

• a workflow for generating personalized active learning ex-
ercises, emulating how a teacher might socratically discuss
good and bad choices with a student while they review the
student’s solution together.

• a working system which implements the above technique
and method for datasets from both MOOCs and large resi-
dential classes on introductory Python programming.

• two lab studies which evaluate both the teachers’ and stu-
dents’ experience of the workflow.

In the sections that follow, we will survey related work and
provide background on variable name design. We will then
describe the Foobaz interface and how it was informed by a
user-centered iterative design process. We present the results
of our two user studies in detail and discuss the design impli-
cations. Finally, we describe how this interface can be gen-
eralized to other kinds of feedback on thousands of student
solutions.

RELATED WORK AND BACKGROUND
Foobaz builds upon past systems for enabling grading at
scale, particularly in the context of teaching students how to
program well. We also provide background on the principles
of good variable naming.

User Interfaces for Grading at Scale
The powergrading paradigm [1] enables teachers to assign
grades or write feedback to many similar answers at once.
Their interface focused on powergrading for short-answer
questions from the U.S. Citizenship exam. After machine
learning clustered answers, the frontend allowed teachers to
read, grade, or provide feedback on similar answers simul-
taneously. When compared against a baseline interface, the
teachers assigned grades to students substantially faster, gave
more feedback to students, and developed a “high-level view
of students’ understanding and misconceptions” [2].

OverCode [4] took steps toward enabling powergrading in
the domain of programming education. The system enabled
teachers to visualize and explore the thousands of student
submissions to simple exercises in an introductory program-
ming MOOC. OverCode used static and dynamic analysis to
cluster similar solutions on the basis of variable behavior, and
then presented these “stacks” to the teacher. It was found
that the system enabled teachers to more quickly understand
the different strategies and misconceptions used by students.
Foobaz builds upon the OverCode pipeline, using the stacks
and common variables it produces as the basis for delivering
feedback on variable names at scale.

Foobaz presents a significant departure from OverCode. The
Foobaz system uses the OverCode program analysis backend
to bring to the fore what OverCode intentionally hid: variable
names. In order to create the new user interface, we devel-
oped a technique for visualizing the variation of names within
clusters. The feedback mechanism is also distinct. OverCode
helped teachers write general feedback for the entire class,
while Foobaz creates personalized feedback quizzes for each
student.

Two more recently published systems help teachers give pro-
gramming students subjective feedback on coding style: Au-
toStyle [10] and ACES [11]. AutoStyle is designed for au-
tomatically composing code style feedback to programming
students at scale. Style, in this system, refers to the effec-
tive use of programming idioms; it does not allow for feed-
back on variable names, indentation, or punctuation. ACES
relies on static analysis, Abstract Syntax Trees, and unsuper-
vised learning to streamline the process of grading on style.
The analysis backend recommends feedback for each new
submission based on past solutions and teacher annotations.
However, in its user interface, the teacher still reviews sub-
missions one at a time, ultimately limiting its ability to scale.

Variable Name Design
Designing names for variables is an art more than a science.
Donald Knuth compares a good programmer to an essayist
who, “with thesaurus in hand, chooses the names of variables
carefully and explains what each variable means” [8]. With-
out modifying execution, names can express to the human
reader the type and purpose of an object, as well as suggest
the kinds of operators used to manipulate it [7].

The freedom that programmers have when naming classes,
functions, and variables allows them to name variables
poorly. At best, bad variable names are the subject of hu-
mor, i.e., “26 Variable Names for Busy Developers: a, b,
c, d, e...” [6]. Various naming conventions, like Hungarian
notation, have evolved to help developers use their freedom
wisely. The Google C++ Style Guide authors assert that their
most important consistency rules govern naming, which are
arbitrary but consistent in order to increase human readabil-
ity [5].

Programmers can develop their own heuristics for good vari-
able names through the experiential learning process of build-
ing, debugging, and sharing increasingly large programs with
others and their future selves. During interviews, one profes-
sor explained an elaborate set of guidelines that she person-
ally developed and teaches to her students, e.g., all method
names must be verbs [Finale Doshi, personal communica-
tion].

Variable Names in Classrooms
Bad variable names can throw roadblocks into the paths of
already struggling beginners. Introductory programming stu-
dents will, for example, iterate over the elements of an array
but name the iterator as if it is an index, and vice versa [Gut-
tag, personal communication]. It could be an innocent mis-
take that lengthens debugging time or indicative of a flawed

mental model. Rapid feedback on variable names may re-
mind students why naming matters, correct their flawed men-
tal models, and expose them to examples of teacher-endorsed
naming conventions and styles [3].

USER INTERFACE
Consider an introductory programming MOOC where thou-
sands of students submit correct solutions to a programming
exercise. Imagine that many of these solutions include a vari-
able that takes on the same sequence of values, like a running
sum of the elements in an input argument. While most stu-
dents decide to name this variable result, others decide to give
it obscure or less descriptive names like p, val1.

The quality of a variable’s name is most easily judged when
the teacher understands its algorithmic role and relationship
to other variable names within the surrounding code. At scale,
this can be difficult and frustrating, because while variable
roles can be repetitive across many solutions (e.g., a partic-
ular running sum), their names can be unpredictable (result,
val1, s). Instead of browsing student submissions in a linear
fashion, it would be better if the teacher could provide feed-
back on the basis of variable roles.

In Foobaz, teachers can browse stacks of student submissions.
A stack is a set of solutions whose code is identical after
normalizing formatting and variable names, removing com-
ments, and ignoring the exact order of statements. Within
a stack, the teacher can browse the different sets of variable
names that students chose, label some of them as, e.g., “too
short” or “misleading,” and add comments.

Teacher labels and comments are used to provide students
with tailored feedback in the form of personalized quizzes
on variable names. By providing feedback on only a few
variable names, personalized quizzes are generated that are
potentially relevant to thousands of students. Foobaz is dis-
tinct from powergrading systems: instead of grading as many
names as possible, the system produces personalized quizzes
that have excellent examples of good and bad variable names
students would not otherwise get to see and learn from.

Producing Stacks and Common Variables
Foobaz enables feedback at scale because teachers can
browse solutions on the basis of stacks of similar solutions
and common variables. These groupings are automatically
produced by the OverCode analysis pipeline, which starts by
executing each student’s solution on a single test case and
tracking the sequences of values that variables take on. Com-
mon variables are identified as those that behave the same
way (i.e., take on the same sequence of values) across multi-
ple solutions. Raw solutions are then normalized by renam-
ing instances of common variables with their most popular
names, as well as removing comments and extra whitespace.
Normalized solutions that have the same set of lines can be
grouped together into a stack, with a single representative on
top for the teacher to read.

The stacking performed by the system directly reduces the
number of implementations that a teacher needs to analyze
in order to provide feedback to the majority of the class.

Furthermore, Foobaz is sensitive to variable roles, meaning
that variables that behave the same across different stacks are
linked together as a single common variable. The result is that
feedback provided for a variable in one stack is propagated to
variables that play out the same behavior in other stacks.

Rating Variable Names
The Foobaz interface lets the teacher rate variable names in
the context of their role in the program. Figure 1 shows the
teacher’s view while they perform this task.

The teacher is presented with a scrollable list of stacks. Each
stack is represented as normalized stack code followed by a
table of alternative variable names. Since some of the tables
are taller than the screen, the normalized stack code is pinned
to the screen in such a way that it remains visible until the
next stack is scrolled into view.

Each column of the table represents the common variables
occurring in the stack, where each common variable’s most
popular name serves as the column header. Each row of the
table represents a unique set of variable names used in a solu-
tion (e.g., secretWord, lettersGuessed, guessedWord, char).
We show sets of variable name choices, rather than indepen-
dent columns of variable names, because we found in early
pilot testing that variable names can at times make more sense
when seen as a group, rather than as individual naming deci-
sions. This helps give teachers the context and confidence to
assign quality judgments.

As the teacher brushes over the names of a common vari-
able in the table, its occurrences in the normalized code are
highlighted, so they can develop an understanding of the vari-
able’s role in the solution. The teacher can then go down the
list of student-chosen names, rating as many of them as they
desire using three different labels: “misleading or vague,”
“too short,” or “fine.” These labels were based on early pi-
lot testing with beginner programmers but future iterations of
Foobaz may support teacher-added labels. Next to each name,
they can also see how frequently it was given to that common
variable across all solutions in the dataset, and can sort the en-
tire table by this frequency. In order to draw teachers’ atten-
tion to student-chosen variable names, variables with names
that match one of given parameter names provided with the
homework prompt are greyed out. The long tail of infre-
quently used names can be a place where both the best and
worst examples of names can be found.

It is important to note that each common variable is likely to
occur in multiple stacks. When the teacher selects a particular
name, or set of names, for a common variable, occurrences in
other stacks are highlighted as well. When they assign a label
to a name, the label is propagated to all uses of the name
for that common variable, across all the stacks. This has the
effect of “filling down” the teacher’s annotations. As teachers
scroll down, they see that much of their feedback has been
propagated for them, letting them focus on the remaining best
and worst examples they might find.

A progress bar at the top of the page indicates the coverage of
their feedback across all variable names. Since teachers were
motivated by the progress bar to maximize their coverage, we

Figure 2. A personalized quiz as seen by the student, delivered by an
edX-based system maintained by a large university. Students are shown
their own code, with a variable name replaced by an arbitrary symbol,
followed by variable names for the student to consider and label using
the same labels that were available to the teacher. After the student has
submitted their own judgments, the teacher’s labels are revealed, along
with their explanatory comments.

provided a button which would select and scroll into view the
next most popular, yet unlabeled name for a common vari-
able. Also included to maximize efficiency, the interface sup-
ports navigation through the variable names in the table using
arrow keys. Teachers can also press hotkeys to rate variables
instead of clicking on one of the three quality judgments, e.g.,
press 2 to rate a variable name as “too short.”

Making Quizzes
Each quiz is an active learning exercise that asks the student
to think about good and bad names for a common variable.
Quizzes begin by showing a solution with that common vari-
able’s name replaced by an arbitrary symbol everywhere it
occurs. In a personalized quiz, the solution is the student’s
own, as shown in Figure 2. The quiz presents the student
with several variable names as candidate replacements for the
symbol, one of which may be the student’s original choice.
The student labels these names before checking their labels
against the teacher’s. If a student’s solution includes a partic-
ular common variable, then that student can receive a person-
alized version of the quiz about that variable.

As teachers rate variables by attaching labels to them, quizzes
are created with these names as their good and bad examples.
Using the Toggle Quiz Preview button, teachers can see a pre-
view of the quizzes (Figure 3) alongside the scrollable list of
stacks and watch the quizzes grow as they rate more names.

Figure 3. The quiz preview pane of the Foobaz teacher interface. Vari-
able behavior was logged by running all solutions on a common test case.
This particular teacher created quizzes for the common variable i that
iterates through indices of a list, the common variable letter, which iter-
ates through the characters in an input string, and the common variable
result, which accumulates one of the acceptable return values, ‘ i e .’

Problem Description Source Solutions

iterPower 6.00x (edX) 3875
hangman 6.00x (edX) 1118
computeDerivative 6.00x (edX) 1433
dotProduct 6.0001 (residential) 229

Figure 4. Number of solutions in datasets.

Problem Misleading Too short Good Total names
or Vague

iterPower 3 3 15 929
hangman 7 4 10 763
compDeriv 6 5 10 670
dotProduct 11 3 17 180

Figure 5. Subjects in Study 1, on average, labeled a small fraction of the
total names, covering all three provided name categories.

They can hide the quiz preview to reduce visual clutter while
they explore all the stacks, common variables, and interesting
alternative names.

If two different common variables perform the same concep-
tual role in student solutions but do not go through the ex-
act same sequence of values, then the teacher can use the
“Merge” button to combine the quizzes about each common
variable into a single quiz. This quiz becomes relevant to stu-
dents who have either common variable in their own solution
and can be sent out to both groups.

Ultimately, the teachers’ goal is to provide pedagogically
valuable personalized quizzes to as many of the hundreds or
thousands of students in the course as possible. Analogous
to the progress bar for variable names, the quiz preview pane
includes a progress bar for the number of stacks of solutions
that will receive at least one quiz. Like the previously dis-
cussed button for selecting the next most popular unlabeled
name, the quiz preview pane also includes a button for jump-
ing to the next largest stack of student solutions that do not
yet have any quizzes. If the teacher deems one of their au-
tomatically populated quizzes to be not pedagogically valu-
able, then they can uncheck the option to send that quiz back
to students. To provide more illustrative examples that might
not have been produced in student solutions, teachers can add
their own custom good and bad variable name examples and
write explanations in the comment field associated with each
alternative name.

EVALUATION
We evaluate Foobaz’s teacher and student-facing interfaces
with two consecutive user studies, one for each population.
In order to evaluate Foobaz’s scalability, the solutions seen
by teachers were collected from MOOCs with thousands of
students and a residential college class of several hundred stu-
dents.

Datasets
We evaluated Foobaz on sets of correct solutions to four dif-
ferent programming exercises, ranging in size from a couple
hundred to several thousand solutions, collected from 6.00x,
an introductory programming course in Python that was of-
fered on edX in the fall of 2012, and 6.0001, a residential
introductory programming course in Python offered at MIT
in the fall of 2014 (see Figure 4). The four exercises, re-
ferred to here as iterPower, hangman, dotProduct,
and computeDerivative, are representative of typical
exercises that students solve in the early weeks of an introduc-
tory programming course. They have varying levels of com-
plexity and ask students to perform loop computation over
three fundamental Python data types, integers, strings, and
lists.

Teacher Study
During the initial briefing, teachers were informed that they
would be looking at solutions that had already passed an au-
tograder and instructed to focus only on variable names, ig-
noring other aspects of code style, structure, and correctness.
Teachers were invited to look over a page in a browser with

all solutions concatenated in a random order into a flat list
of boxed, syntax-highlighted code. We chose this design as
our baseline to emulate existing methods of reviewing student
functions.

Using this baseline interface, teachers were asked first to rate
as many good and bad variable names as possible, with an eye
toward maximizing coverage of names (Task Part 1). Next,
the teachers were shown an example of a quiz and were asked
to compose their own by listing variable names and labeling
them as good or bad with whatever short descriptors and ex-
planatory comments they wished (Task Part 2). Participants
were given 5 minutes for each task, and then asked to fill out
a survey about their experience. (The answers to two of these
surveys were lost so we only report survey results from 8 of
the 10 participants.)

Participants learned about the Foobaz interface by watching a
tutorial video. This training process took between 10 and 15
minutes depending on the dataset shown in the video. Partici-
pants were encouraged to hold their questions to the end, and
answer them by interacting with the interface.

Participants performed both Task Part 1 and 2 on a third
dataset of solutions in the Foobaz teacher interface. Partic-
ipants were asked to spend 5 minutes to perform each task,
though some decided to spend more time. They filled out the
same surveys about their experience again, followed by a fi-
nal survey about which features of the Foobaz interface they
found helpful.

Apparatus
In all sessions, we used a laptop with a 15.4-inch 2880x1800
pixel Retina screen. All participants’ interactions with the
system were logged with timestamps using Meteor collec-
tions.

Participants
We recruited 10 participants (6 female) with ages between 20
and 29 (µ = 23.1, σ = 2.7) through computer science-specific
and campus-specific mailing lists and Facebook groups. All
participants self-reported that they had been a grader, lab as-
sistant, or teaching assistant for a Python course.

Results
Problems with Baseline. When asked to comment on good
and bad variable names based on the baseline interface, most
teachers immediately began scrolling through solutions one
by one, taking notes as they went, fully aware that they would
only be able to skim a small, random fraction of the total
number of solutions. The sheer volume of solutions was over-
whelming to some.

Results of the post-baseline survey reinforce critical usabil-
ity issues with the status quo that Foobaz was designed to
address. In these survey responses, teachers expressed an
appreciation for the simplicity, readability, and searchability
of the baseline interface but wished that the endless stream
of often very similar solutions could be summarized or “de-
duped” before they had to read through them. One teacher
requested that variables be automatically identified, so that
all references to a variable can be highlighted. This may have

been a direct consequence of the fact that it was not possi-
ble to search for all the occurrences of the variable name i
without the browser also highlighting all the i’s within the
rest of the names and keywords, e.g., the i in “if.” Another
teacher requested an automated count of common variable
names. These teachers anticipated three critical features of
the Foobaz interface: deduplication, variable name counts,
and highlighting all occurrences of selected names.

Two teachers commented on the importance of understand-
ing the role a variable takes on within the program. One
teacher writes, “Many times the variable names meant some-
thing but I still had to read the code to make sure that it meant
what I thought it meant in the context of the code.” The sec-
ond teacher observed, “Whether a variable name is good or
bad depends a lot on its function within the code, and since
each code block has a somewhat unique structure, I felt like I
should be creating separate categories for good vs. bad vari-
ables names, e.g., ‘for the derivative result,’ ‘for a counter in
a loop through poly,’ etc.” This is exactly what the Foobaz
interface is designed to support.

Power-law Distribution of Names The approximately
power-law-type distribution of stacks of code from the thou-
sands of edX solutions has already been reported in prior
work, such as Figure 12 in [4]. In Foobaz, the distribu-
tion of unique combinations of variable names and behaviors
does not differ significantly from a power-law distribution;
the Kolmogorov-Smirnov test for a difference between the
best-fitting power-law distribution and each dataset all gave
p-values of at least 0.44 (i.e., not significantly different), with
the best-fitting exponent of the distribution between 1.79 and
2.13. Within each stack, the names for any particular variable
appear to follow the same distribution.

There is no ground truth for which variable names are “bad,”
but we can report the counts of variables that the users chose
to label and the counts of unique names for the top com-
mon variables in each problem. In the 3875 iterPower
solutions, there were 179 different names given to a variable
representing the base being exponentiated and 64 different
names for a variable representing the exponent. In the 1393
computeDerivative solutions, there were 176 different
names given for the variable containing the result and 39 dif-
ferent names for the most commonly used iterator variable. In
the 1118 hangman solutions, there were 50 names given to
the variable that iteratively takes on the characters of the ‘se-
cret word’ input argument and 99 names given to the variable
containing the string most commonly returned by solutions as
the answer.

Figure 5 shows the fraction of names that subjects labeled
in Study 1, and the distribution of those names across vari-
ous categories of quality. In spite of the unknown underlying
distribution of good and bad variable names, the subjects are
finding and labeling variables across all available categories
in order to make quizzes.

Efficiency of Foobaz. The efficiency of using Foobaz to
create feedback came up repeatedly in teachers’ survey re-
sponses. Teachers appreciated the feeling of doing the task

“at scale.” One teacher noted that it felt like, “with each ac-
tion, I was helping a large number of students” without “re-
peating or wasting effort too much.” While using the button
that highlights and scrolls the next most popular, untagged
variable name into view, a teacher told the experimenter, “I
love this button!” The arrow key-based navigation through
tables of variable names was appreciated as well. At least
one teacher commented that “seeing variable names grouped
by their role made the process much more efficient.”

The efficiency gains of the interface were hampered by, at
times, a noticeably sluggish interface response time to some
queries that scaled with the size of the dataset. This sluggish-
ness can be cut down by reducing the many unnecessarily
repeated calculations made in the current implementation.

Quiz Composition. In both interfaces, teachers appreciated
the potential pedagogical value of making quizzes: “I liked
that with the [quiz] I made, students can actually learn about
good alternatives. ... [T]hey can change their variable names
after putting extra thought into it.” A teacher expressed appre-
ciation that, using the Foobaz interface, they could generate
quizzes based on actual submitted code as well as their own
comments.

Coverage. Immediately after using the baseline interface,
teachers did not strongly agree or disagree with the statement
“I was able to give specific, personalized feedback to many
students” (µ = 3, σ = 1.4 on a 7-point Likert scale with
1: strong disagreement and 7: strong agreement). Teachers
slightly disagreed with the statement “I saw a large percent-
age of these students’ variable names” (µ = 2.6, σ = 1.2) and
slightly agreed with the statement “This interface helped me
provide feedback to many students” (µ = 3.6, σ = 2.0). After
using the Foobaz interface, the mean level of agreement with
these statements jumped to 5.5 (σ = 1.7), 6.3 (σ = 0.46), and
6.6 (σ = 0.5).

Figure 6 shows that most solutions in the edX datasets re-
ceived at least one or two quizzes. Solutions in Figure 6
have multiple common variables on which they could poten-
tially be quizzed (3, 3, and 4 on average in subfigures (a),
(b), and (c), respectively). One teacher used Foobaz to create
quizzes for a much smaller dataset, collected from the resi-
dential class of only several hundred students. They achieved
a similar percentage of coverage (87% of student solutions re-
ceived at least one quiz) in a similar amount of time, showing
that the Foobaz workflow and output appears relatively invari-
ant to the size of the dataset. Figure 7 illustrates that, within
minutes of their first interaction with the system, teachers can
label a significant portion of student-chosen variable names
in a dataset, though their progress trails off as they encounter
the long tail of names for particular roles and transition to
creating better quizzes.

Combined with Figure 5, Figure 6 also shows that, by only
labeling approximately 20 variable names in each of the edX
datasets with thousands of student solutions, teachers cover
at least 85% of the class with personalized feedback quizzes.
Even though Figure 7 shows that the coverage of individ-
ual variable names with feedback is high, it matters less for

Foobaz than in powergrading systems. What matters more is
the coverage of students with quizzes that have excellent ex-
amples of good and bad variable names students would not
otherwise get to see and learn from.

Student Study
We ran a second study on the student side of the workflow
in order to (1) find out if the teachers’ efforts in the previous
study produces quizzes that are relevant to these new students
and (2) better understand student reactions to this novel form
of feedback. In order to do this, we targeted beginner pro-
gramming students and invited them into the lab to receive
personalized quizzes generated by the teachers in our previ-
ous study.

Before the start of the study, quizzes composed by teachers
using Foobaz in the first user study were rendered using the
edX framework, ready to be personalized. Since pilot testing
with beginner programming students indicated that six alter-
native variable names in a quiz is too many, teachers’ quizzes
were randomly subsampled to include a maximum of five al-
ternative names for students to consider.

Students came into the lab for one hour and composed solu-
tions to one of the four exercises. After receiving each so-
lution, the experimenter mentally executed the solution and
compared the behavior of its variables to the variable behav-
ior covered by the teachers’ quizzes. If there was a match
to one or more teachers’ quizzes, one quiz was randomly se-
lected. The experimenter made a copy of the student’s code
and replaced every instance of the variable to be quizzed on
by an arbitrary symbol, e.g., a bold letter A. The experimenter
then appended the quiz to the modified copy of the student’s
solution and delivered it to the student as a personalized quiz.
If there was no match to one or more teachers’ quizzes, then
the student received a generic quiz, about a variable name in
a solution other than their own.

After the student completed their personalized quizzes, they
took a survey about their experience. Students who were able
to complete the coding exercise and quizzes with significant
time left in their session repeated this process for a second
programming assignment.

Apparatus
In all sessions, we used laptops with 15.4-inch or 13.3-inch
screens. All participants’ interactions with the system were
logged using the edX platform infrastructure.

Participants
We recruited 6 participants (4 female) who were either un-
dergraduate or graduate students, through computer science-
specific and campus-specific mailing lists, Facebook groups,
and word of mouth advertising. Their ages were between
18 and 27 (µ = 20.4, σ = 3.2). Four of the participants
had taken one or two introductory programming courses on
Coursera or at their high school or college campus. The re-
maining two participants had taken three or four classes that
involved learning programming languages or computer sci-
ence concepts, and had some experience with Python.

Figure 6. Quiz coverage of student solutions across three datasets.

Figure 7. Variables in iterPower solutions labeled by each teacher.

Results
Six students took a total of 12 quizzes, 11 of which were able
to be personalized, even though their solutions were, in some
cases, significantly different from the prior student solutions
seen by teachers during quiz creation. Correspondingly, in
the surveys that followed, students agreed with the statement
“This quiz felt relevant to me” at an average level of 5.4 (σ =
1.0) on a 7-point scale. One student’s solution did not receive
a personalized quiz because its variables behaved in ways that
no teacher in the previous study considered. That student was
able to understand the new solution and take the quiz, though
it had little relation to their own solution.

Students were asked in the post-quiz surveys about what they
learned from the exercise. One student replied, “Possible
variable names are pretty much synonyms, but the more de-
tailed/specific ones are better.” Another wrote, “It’s worth-
while to pick good variable names.” Students’ average level
of agreement with the statement “The quiz made me think
about what makes variable names good or bad” was 6.2
(σ = 0.9) on a 7-point scale. Mean levels of agreement with
statements about the quizzes being confusing or tedious were
2.9 (σ = 1.5) and 3.4 (σ = 1.2), respectively, on a 7-point
scale.

Some students observed that this was a very subjective qual-
ity of their code to be quizzed on, but all students were able
to understand and complete the quizzes they were assigned.
Some students disagreed with the instructor-provided ratings.
When this occurred and the teacher left no explanation, stu-
dents had at least one of three reactions: (1) They tried to
imagine what the teacher was thinking. (2) They expressed
displeasure at the lack of explanation. (3) They decided that
they still disagreed with the teacher’s judgment. Students
did pick up on the teachers’ preferred naming conventions
through the quizzes. As evidence for this, two students cor-
rectly wondered aloud whether a different teacher made each
of the quizzes they saw during their session. Given the sub-
jectivity of the task, it may be necessary to grade only on par-
ticipation, rather than absolute agreement with the teacher.

Students were not informed that quizzes were populated
largely by fellow student variable names, but one student vol-
unteered their appreciation for a “wide spectrum” of variable
names to consider. However, randomly sampling teachers’
quizzes down to 5 variable names created some student con-
fusion when there were no positive naming examples in the
resulting quiz. This is evidence that sampling should be con-
strained to include both good and bad examples and the user
interface should provide some additional guidance to remind
teachers that students highly value a balance of examples,
each paired with an explanatory comment.

LIMITATIONS
The first study establishes the usability, learnability, and effi-
cacy of the main Foobaz interface for teachers. The second
study is intended to show that students can understand and
use the personalized quizzes that Foobaz produces. However,
this evaluation of the student experience does not yet show
pedagogical benefit. To measure learning benefits, we plan

to deploy the tool in a large Python programming course this
fall.

FUTURE WORK
This is a step on a clear path toward user interfaces that al-
low teachers to give meaningful feedback to students at scale
about a variety of at least partially subjective but important
aspects of code. We believe that the approach we take in de-
signing Foobaz is generalizable to other aspects of program-
ming style. Just as we establish the equivalency of variables
based on their behavior during test cases, one could establish
the behavior equivalency of larger or more abstract entities,
such as student-written lines of code, sets of lines of code,
or entire functions. We consider this a class of problems that
Foobaz, and similar systems built after it, can tackle.

In future iterations of the Foobaz interface, constraints and af-
fordances will be added to encourage teachers to leave more
explanations for their assessments, accompanied by better
support for reusing common comments. We will also allow
teachers to augment or overwrite existing labels, e.g., “too
short,” to match their own preferences. Finally, based on us-
age logs and Likert scale ratings on the helpfulness of various
features, we will simplify the interface by removing unappre-
ciated features and improve average response times by elimi-
nating redundant computation.

CONCLUSION
We have designed and studied both the teacher and student
sides of a novel interface and workflow for providing feed-
back on student variable names at scale. We hope it will serve
as an example and a design pattern for future work on user in-
terfaces for teaching programming to thousands of students at
once.

ACKNOWLEDGMENTS
We would like to thank the past and present staff of 6.0001,
MIT’s Introduction to Computer Science and Programming
in Python, for their feedback and support. We also appreciate
the financial support from MIT’s Amar Bose Teaching Fel-
lowship and Quanta Computer through the Qmulus Project.

REFERENCES
1. Sumit Basu, Chuck Jacobs, and Lucy Vanderwende.

2013. Powergrading: a Clustering Approach to Amplify
Human Effort for Short Answer Grading. TACL 1
(2013), 391–402.

2. Michael Brooks, Sumit Basu, Charles Jacobs, and Lucy
Vanderwende. 2014. Divide and correct: using clusters
to grade short answers at scale. In Learning at Scale.
89–98.

3. John C Chen, Dexter C Whittinghill, and Jennifer A
Kadlowec. 2006. Using rapid feedback to enhance
student learning and satisfaction. In Frontiers in
Education Conference, 36th Annual. IEEE, 13–18.

4. Elena L. Glassman, Jeremy Scott, Rishabh Singh,
Philip J. Guo, and Robert C. Miller. 2015. OverCode:
Visualizing Variation in Student Solutions to
Programming Problems at Scale. ACM Trans.
Comput.-Hum. Interact. 22, 2, Article 7 (March 2015),
35 pages. DOI:http://dx.doi.org/10.1145/2699751

5. GoogleStyle 2015. Google C++ Style Guide. (2015).
https://google-styleguide.googlecode.com/svn/
trunk/cppguide.html.

6. @HackerNewsOnion. 2014. 26 Variable Names For
Busy Developers. Tweet. (10 December 2014).
Retrieved April 13, 2015 from https://twitter.com/
hackernewsonion/status/542754658465226752.

7. Derek M. Jones. 2008. Operand names influence
operator precedence decisions. (February 2008).

8. Donald Knuth. 2000. Literate Programming. (June
2000). Retrieved April 8, 2015 from
http://www.literateprogramming.com/.

9. Alex Mabanta, Chloe Hunt, Shannon Najmabadi, and
Kai Ridenoure. 2013. How big is UC Berkeleys biggest
class? (2013). http://www.dailycal.org/2013/09/03/
how-big-is-uc-berkeleys-biggest-class/.

10. Joseph Bahman Moghadam, Rohan Roy Choudhury,
HeZheng Yin, and Armando Fox. 2015. AutoStyle:
Toward Coding Style Feedback at Scale. In Proceedings
of the Second (2015) ACM Conference on Learning @
Scale (L@S ’15). ACM, New York, NY, USA, 261–266.
DOI:http://dx.doi.org/10.1145/2724660.2728672

11. Stephanie Rogers, Dan Garcia, John F. Canny, Steven
Tang, and Daniel Kang. 2014. ACES: Automatic
Evaluation of Coding Style. Master’s thesis. EECS
Department, University of California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-77.html

http://dx.doi.org/10.1145/2699751
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html
https://twitter.com/hackernewsonion/status/542754658465226752
https://twitter.com/hackernewsonion/status/542754658465226752
http://www.literateprogramming.com/
http://www.dailycal.org/2013/09/03/how-big-is-uc-berkeleys-biggest-class/
http://www.dailycal.org/2013/09/03/how-big-is-uc-berkeleys-biggest-class/
http://dx.doi.org/10.1145/2724660.2728672
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-77.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-77.html

	Introduction
	Related Work and Background
	User Interfaces for Grading at Scale
	Variable Name Design
	Variable Names in Classrooms

	User Interface
	Producing Stacks and Common Variables
	Rating Variable Names
	Making Quizzes

	Evaluation
	Datasets
	Teacher Study
	Apparatus
	Participants
	Results

	Student Study
	Apparatus
	Participants
	Results

	Limitations
	Future Work
	Conclusion
	Acknowledgments
	REFERENCES

